Trees

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Cagr1 Coltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tiibingen
Seminar fiir Sprachwissenschaft

Winter Semester 2024 /25



Introduction

Why study trees

o A tree is a, hierarchical, non-linear data structure useful in many algorithms

o We have already resorted to descriptions using trees (e.g., recursion trace)

A tree is a graph with certain properties
o Itis also very common in (computational) linguistics:

— Parse trees: representing syntactic structure of sentences

- Language trees: representing the historical relations between languages

— Decision trees: a well-known algorithm for machine learning, also used for
many NLP problems

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024/25 1/17



Introduction Trees Tree traversals

Definitions

o A treeis a set of nodes organized
hierarchically with the following
properties:

- If a tree is non-empty, it has a
special node called root node

— Except the root node, every node
in the tree has a unique parent (all
nodes except the root are children
of another node)

o Alternatively, we can define a tree
recursively:
— The empty set of nodes is a tree
— Otherwise a tree contains a root
with sub-trees as its children

C. Coltekin,  SfS / University of Tiibingen

Winter Semester 2024/25

2/17



Introduction Trees Tree traversals

Definitions

o A treeis a set of nodes organized
hierarchically with the following
properties:

- If a tree is non-empty, it has a
special node called root node

— Except the root node, every node
in the tree has a unique parent (all
nodes except the root are children
of another node)

o Alternatively, we can define a tree
recursively:
— The empty set of nodes is a tree
— Otherwise a tree contains a root
with sub-trees as its children

C. Coltekin,  SfS / University of Tiibingen

Winter Semester 2024/25

2/17



Introduction Trees Tree traversals

Definitions

o A treeis a set of nodes organized
hierarchically with the following
properties:

- If a tree is non-empty, it has a
special node called root node

— Except the root node, every node
in the tree has a unique parent (all
nodes except the root are children
of another node)

o Alternatively, we can define a tree
recursively:
— The empty set of nodes is a tree
— Otherwise a tree contains a root
with sub-trees as its children

C. Coltekin,  SfS / University of Tiibingen

Winter Semester 2024/25

2/17



Trees

More definitions

o The nodes with the same parent are called siblings e
o The nodes with children are called internal nodes

o The nodes without children are the leaf nodes o e e
o A path is a sequence of connected nodes

o Any node in the path from the root to a particular a e e e

node is its ancestors

« A node is a descendant of its ancestors G a “
o A subtree is a tree rooted by a non-root node
o The depth of a node is the number of edges from root e

o The height of a node is the number of edges from the
deepest descendant

o The height of a tree is the height of its root

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024/25 3/17



Trees

More definitions

o The nodes with the same parent are called siblings e
o The nodes with children are called internal nodes

o The nodes without children are the leaf nodes o e e
o A path is a sequence of connected nodes

o Any node in the path from the root to a particular e e c e

node is its ancestors

o A node is a descendant of its ancestors @ a 0
o A subtree is a tree rooted by a non-root node
o The depth of a node is the number of edges from root e

o The height of a node is the number of edges from the
deepest descendant

o The height of a tree is the height of its root

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 3/17



Trees

More definitions

o The nodes with the same parent are called siblings e
o The nodes with children are called internal nodes

o The nodes without children are the leaf nodes e Q e
o A path is a sequence of connected nodes

o Any node in the path from the root to a particular a e e e

node is its ancestors

o A node is a descendant of its ancestors G a 0
o A subtree is a tree rooted by a non-root node
o The depth of a node is the number of edges from root e

o The height of a node is the number of edges from the
deepest descendant

o The height of a tree is the height of its root

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024/25 3/17



Trees

More definitions

o The nodes with the same parent are called siblings e
o The nodes with children are called internal nodes

o The nodes without children are the leaf nodes e Q e
o A path is a sequence of connected nodes

o Any node in the path from the root to a particular a e e e

node is its ancestors

o A node is a descendant of its ancestors G 0 0
o A subtree is a tree rooted by a non-root node
o The depth of a node is the number of edges from root e

o The height of a node is the number of edges from the
deepest descendant

o The height of a tree is the height of its root

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 3/17



Trees

More definitions

o The nodes with the same parent are called siblings e
o The nodes with children are called internal nodes

o The nodes without children are the leaf nodes o Q G
o A path is a sequence of connected nodes

o Any node in the path from the root to a particular e e e e

node is its ancestors

« A node is a descendant of its ancestors G a “
o A subtree is a tree rooted by a non-root node
o The depth of a node is the number of edges from root e

o The height of a node is the number of edges from the
deepest descendant

o The height of a tree is the height of its root

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024/25 3/17



Trees

More definitions

o The nodes with the same parent are called siblings e
o The nodes with children are called internal nodes

o The nodes without children are the leaf nodes e Q e
o A path is a sequence of connected nodes

o Any node in the path from the root to a particular a e e e

node is its ancestors
e A node is a descendant of its ancestors G 0 “
o A subtree is a tree rooted by a non-root node
o The depth of a node is the number of edges from root e

o The height of a node is the number of edges from the
deepest descendant

o The height of a tree is the height of its root

depth

height

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 3/17



Introduction Trees Tree traversals

Ordered trees

o A tree is ordered if there is an ordering between siblings. Typical examples
include:

— A tree representing a document (e.g., HTML) structure
— Parse trees
— (maybe) a family tree

 In many cases order is not important

— Class hierarchy in a object-oriented program
— The tree representing files in a computer

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 4/17



Introduction Trees Tree traversals

Binary trees

even more definitions

C. Coltekin,

Binary trees, where nodes can have at most two
children, have many applications

Binary trees have a natural order, each child is either
a left child or a right child

A binary tree is proper, or full if every node has either
two children or none

In a complete binary tree, every level except possibly
the last, is completely filled, and all nodes at the last
level is at the left

A perfect binary tree is a full binary tree whose leaf
nodes have the same depth

SfS / University of Tiibingen

Winter Semester 2024/25

5/17



Introduction Trees Tree traversals

Some properties of binary trees

For a binary tree with ng leaf, n; internal, n
nodes and with height h

e h+1<n g2 1

e h<ny<2h—1

o 1<y <2h
lognm+1)—T<h<n-—1

For any proper binary tree, ny =ni + 1

. Coltekin,  SfS / University of Tiibingen Winter Semester 2024/25 6/17
y g



Introduction Trees Tree traversals

Binary tree example: expression trees
2x3-(5+3)/2

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 7 /17



Introduction Trees

Implementation of trees

general case: linked data structures

Iree traversals

N-ary Binary
data data
links to children left child right child
C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024/25

8/17



Introduction Trees

Implementation of trees

array implementation of binary trees

Iree traversals

 Binary trees can also be implemented with arrays:

the root node is stored at index 0
the left child of the node at index i is stored at 2i + 1

the right child of the node at index i is stored at 2i + 2
the parent of the node at index i is at index | (i—1)/2]

o If the binary tree is complete, this representation
does not waste (much) space

@

®)

O

(4

©

©

®

@

@

@

0

1

C. Coltekin,  SfS / University of Tiibingen

10

11

12

13

14

15

Winter Semester 2024 /25

9/17



Introduction Trees Tree traversals

Breadth first traversal (level order)

(x)
a Q G def breadth_first(root):

queue = []
queue . append (root)
@ e e e while queue:
node = queue.pop(0)
# process the node
G e a print(node.data)
for child in node.children:
G queue . append (child)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 10/17



Introduction Trees Tree traversals

Breadth first traversal (level order)

(5
e Q o def breadth_first(root):

queue = []
queue . append (root)
@ e e e while queue:
node = queue.pop(0)
# process the node
G e a print(node.data)
for child in node.children:
G queue . append (child)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 10/17



Introduction Trees Tree traversals

Breadth first traversal (level order)

(x)
a Q G def breadth_first(root):

queue = []
queue . append (root)

@ e while queue:

node = queue.pop(0)

# process the node
G e a print(node.data)

for child in node.children:

G queue . append (child)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 10/17



Introduction Trees Tree traversals

Breadth first traversal (level order)

(x)
a Q G def breadth_first(root):

queue = []
queue . append (root)

@ a while queue:

node = queue.pop(0)

# process the node
G e o print (node.data)

for child in node.children:

G queue . append (child)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 10/17



Introduction Trees Tree traversals

Breadth first traversal (level order)

(x)
a Q G def breadth_first(root):

queue = []
queue . append (root)
@ a while queue:
node = queue.pop(0)
# process the node
G e a print (node.data)
for child in node.children:

e queue . append(child)
rabcdefghijk

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 10/17



Introduction

Pre-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Introduction

Pre-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Introduction

Pre-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Introduction

Pre-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Introduction

Pre-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Introduction

Pre-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Pre-order traversal

C. Coltekin,

Introduction

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Pre-order traversal

C. Coltekin,

Introduction

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Pre-order traversal

C. Coltekin,

Introduction

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Pre-order traversal

C. Coltekin,

Introduction

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Introduction Trees Tree traversals

Pre-order traversal

(aj () (o
( ):
@ () © (&) D et i cort

print (node.data)
for child in node.children:

@ 6 0 pre_order (child)
()

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 11/17



Pre-order traversal

C. Coltekin,

Introduction

SfS / University of Tiibingen

Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)

Winter Semester 2024 /25

11/17



Introduction Trees Tree traversals

Pre-order traversal

(aj () (o)
( ):
@ () © (&) D et i cort

print (node.data)
for child in node.children:

@ 6 a pre_order(child)
1)

radebfcghijk

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 11/17



Introduction  Trees Tree traversals

Example: pre-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 12 /17



Introduction  Trees Tree traversals

Example: pre-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 12 /17



Introduction  Trees Tree traversals

Example: pre-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 12 /17



Introduction  Trees Tree traversals

Example: pre-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 12 /17



Introduction  Trees Tree traversals

Example: pre-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 12 /17



Introduction  Trees Tree traversals

Example: pre-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 12 /17



Introduction  Trees Tree traversals

Example: pre-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 12 /17



Introduction  Trees Tree traversals

Example: pre-order in an expression tree

— x 23 /+53

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 12 /17



Introduction  Trees Tree traversals

Example: pre-order in an expression tree

— x23 /+53 2

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 12 /17



Introduction  Trees Tree traversals

Example: pre-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 12 /17



Introduction

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Irees

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees Tree traversals

Post-order traversal

C. Coltekin,  SfS / University of Tiibingen

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees

Post-order traversal

C. Coltekin,

SfS / University of Tiibingen

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)

Winter Semester 2024 /25

13/17



Introduction Trees Tree traversals

Post-order traversal

OSNORO
def post_order(node):
@ e c e for child in node.children:

post_order(child)
# process the mnode

@ 6 a print(node.data)
(1)

deafbhikjgcr

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 13 /17



Introduction  Trees Tree traversals

Example: post-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 14 /17



Introduction  Trees Tree traversals

Example: post-order in an expression tree

23

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 14 /17



Introduction  Trees Tree traversals

Example: post-order in an expression tree

23 x

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 14 /17



Introduction  Trees Tree traversals

Example: post-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 14 /17



Introduction  Trees Tree traversals

Example: post-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 14 /17



Introduction  Trees Tree traversals

Example: post-order in an expression tree

23x53+

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 14 /17



Introduction  Trees Tree traversals

Example: post-order in an expression tree

23x53+2

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 14 /17



Introduction  Trees Tree traversals

Example: post-order in an expression tree

23x53+2/

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 14 /17



Introduction  Trees Tree traversals

Example: post-order in an expression tree

23x53+4+2/—

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 14 /17



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)

hdibjekafcg

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 15717



Introduction  Trees Tree traversals

Example: in-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 16 /17



Introduction  Trees Tree traversals

Example: in-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 16 /17



Introduction  Trees Tree traversals

Example: in-order in an expression tree

2x3

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 16 /17



Introduction  Trees Tree traversals

Example: in-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 16 /17



Introduction  Trees Tree traversals

Example: in-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 16 /17



Introduction  Trees Tree traversals

Example: in-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 16 /17



Introduction  Trees Tree traversals

Example: in-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 16 /17



Introduction  Trees Tree traversals

Example: in-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 16 /17



Introduction  Trees Tree traversals

Example: in-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 16 /17



Introduction  Trees Tree traversals

Example: in-order in an expression tree

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 16 /17



Tree traversals

Summary

o Trees are hierarchical data structures useful in many applications
o We will often return to trees and properties of trees in the rest of the course

o Reading on trees: Goodrich, Tamassia, and Goldwasser (2013, chapter 8), and
optionally the chapter on search trees (Goodrich, Tamassia, and Goldwasser
2013, ch. 11)

Next:
o Heaps and priority queues

e Reading: Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 9)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 17 /17



Acknowledgments, credits, references

[1 Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. 1sen:

9781118476734.

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 Al



blank
C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 A2



blank
C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 A3



blank
C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 A4



blank
C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 A5



	Trees
	Introduction
	Why study trees

	Trees
	Definitions
	Definitions
	Definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	Ordered trees
	Binary trees
	Some properties of binary trees
	Binary tree example: expression trees
	Implementation of trees
	Implementation of trees

	Tree traversals
	Breadth first traversal (level order)
	Breadth first traversal (level order)
	Breadth first traversal (level order)
	Breadth first traversal (level order)
	Breadth first traversal (level order)
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Pre-order traversal
	Example: pre-order in an expression tree
	Example: pre-order in an expression tree
	Example: pre-order in an expression tree
	Example: pre-order in an expression tree
	Example: pre-order in an expression tree
	Example: pre-order in an expression tree
	Example: pre-order in an expression tree
	Example: pre-order in an expression tree
	Example: pre-order in an expression tree
	Example: pre-order in an expression tree
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Post-order traversal
	Example: post-order in an expression tree
	Example: post-order in an expression tree
	Example: post-order in an expression tree
	Example: post-order in an expression tree
	Example: post-order in an expression tree
	Example: post-order in an expression tree
	Example: post-order in an expression tree
	Example: post-order in an expression tree
	Example: post-order in an expression tree
	In-order traversal
	In-order traversal
	In-order traversal
	In-order traversal
	In-order traversal
	In-order traversal
	In-order traversal
	In-order traversal
	In-order traversal
	In-order traversal
	In-order traversal
	In-order traversal
	Example: in-order in an expression tree
	Example: in-order in an expression tree
	Example: in-order in an expression tree
	Example: in-order in an expression tree
	Example: in-order in an expression tree
	Example: in-order in an expression tree
	Example: in-order in an expression tree
	Example: in-order in an expression tree
	Example: in-order in an expression tree
	Example: in-order in an expression tree
	Summary


	Appendix
	Acknowledgments, credits, references


