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Introduction

Why study trees

o A tree is a, hierarchical, non-linear data structure useful in many algorithms

o We have already resorted to descriptions using trees (e.g., recursion trace)

A tree is a graph with certain properties
o Itis also very common in (computational) linguistics:

— Parse trees: representing syntactic structure of sentences

- Language trees: representing the historical relations between languages

— Decision trees: a well-known algorithm for machine learning, also used for
many NLP problems
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Introduction Trees Tree traversals

Definitions

o A treeis a set of nodes organized
hierarchically with the following
properties:

- If a tree is non-empty, it has a
special node called root node

— Except the root node, every node
in the tree has a unique parent (all
nodes except the root are children
of another node)

o Alternatively, we can define a tree
recursively:
— The empty set of nodes is a tree
— Otherwise a tree contains a root
with sub-trees as its children
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Trees

More definitions

o The nodes with the same parent are called siblings e
o The nodes with children are called internal nodes

o The nodes without children are the leaf nodes o e e
o A path is a sequence of connected nodes

o Any node in the path from the root to a particular a e e e

node is its ancestors

« A node is a descendant of its ancestors G a “
o A subtree is a tree rooted by a non-root node
o The depth of a node is the number of edges from root e

o The height of a node is the number of edges from the
deepest descendant

o The height of a tree is the height of its root
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Introduction Trees Tree traversals

Ordered trees

o A tree is ordered if there is an ordering between siblings. Typical examples
include:

— A tree representing a document (e.g., HTML) structure
— Parse trees
— (maybe) a family tree

 In many cases order is not important

— Class hierarchy in a object-oriented program
— The tree representing files in a computer

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 4/17



Introduction Trees Tree traversals

Binary trees

even more definitions

C. Coltekin,

Binary trees, where nodes can have at most two
children, have many applications

Binary trees have a natural order, each child is either
a left child or a right child

A binary tree is proper, or full if every node has either
two children or none

In a complete binary tree, every level except possibly
the last, is completely filled, and all nodes at the last
level is at the left

A perfect binary tree is a full binary tree whose leaf
nodes have the same depth
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Introduction Trees Tree traversals

Some properties of binary trees

For a binary tree with ng leaf, n; internal, n
nodes and with height h

e h+1<n g2 1

e h<ny<2h—1

o 1<y <2h
lognm+1)—T<h<n-—1

For any proper binary tree, ny =ni + 1
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Introduction Trees Tree traversals

Binary tree example: expression trees
2x3-(5+3)/2
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Introduction Trees

Implementation of trees

general case: linked data structures

Iree traversals

N-ary Binary
data data
links to children left child right child
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Introduction Trees

Implementation of trees

array implementation of binary trees

Iree traversals

 Binary trees can also be implemented with arrays:

the root node is stored at index 0
the left child of the node at index i is stored at 2i + 1

the right child of the node at index i is stored at 2i + 2
the parent of the node at index i is at index | (i—1)/2]

o If the binary tree is complete, this representation
does not waste (much) space
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Introduction Trees Tree traversals

Breadth first traversal (level order)

(x)
a Q G def breadth_first(root):

queue = []
queue . append (root)
@ e e e while queue:
node = queue.pop(0)
# process the node
G e a print(node.data)
for child in node.children:
G queue . append (child)
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Introduction

Pre-order traversal
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Irees Tree traversals

def pre_order(node):
# process the node
print (node.data)

for child in node.children:

pre_order (child)
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Introduction Trees Tree traversals

Pre-order traversal

(aj () (o
( ):
@ () © (&) D et i cort

print (node.data)
for child in node.children:

@ 6 0 pre_order (child)
()
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Introduction Trees Tree traversals

Pre-order traversal

(aj () (o)
( ):
@ () © (&) D et i cort
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Introduction  Trees Tree traversals

Example: pre-order in an expression tree
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Post-order traversal
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Irees

Tree traversals

def post_order(node):

for child in node.children:

post_order(child)
# process the mnode
print(node.data)
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Introduction Trees Tree traversals

Post-order traversal

OSNORO
def post_order(node):
@ e c e for child in node.children:

post_order(child)
# process the mnode

@ 6 a print(node.data)
(1)

deafbhikjgcr
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Example: post-order in an expression tree
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Example: post-order in an expression tree
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Introduction Trees Tree traversals

In-order traversal

def in_order (node):
in_order(node.left)
# process the node
print (node.data)
in_order(node.right)
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Tree traversals

Summary

o Trees are hierarchical data structures useful in many applications
o We will often return to trees and properties of trees in the rest of the course

o Reading on trees: Goodrich, Tamassia, and Goldwasser (2013, chapter 8), and
optionally the chapter on search trees (Goodrich, Tamassia, and Goldwasser
2013, ch. 11)

Next:
o Heaps and priority queues

e Reading: Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 9)
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