
Trees
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2024/25

version: 6a65e5b @2024-11-03

Introduction Trees Tree traversals

Why study trees

• A tree is a, hierarchical, non-linear data structure useful in many algorithms
• We have already resorted to descriptions using trees (e.g., recursion trace)
• A tree is a graphwith certain properties
• It is also very common in (computational) linguistics:

– Parse trees: representing syntactic structure of sentences
– Language trees: representing the historical relations between languages
– Decision trees: a well-known algorithm for machine learning, also used for

many NLP problems

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 1 / 17

Introduction Trees Tree traversals

Definitions

• A tree is a set of nodes organized
hierarchically with the following
properties:

– If a tree is non-empty, it has a
special node called root node

– Except the root node, every node
in the tree has a unique parent (all
nodes except the root are children
of another node)

• Alternatively, we can define a tree
recursively:

– The empty set of nodes is a tree
– Otherwise a tree contains a root

with sub-trees as its children

r

a

d e

b

f

c

g

h i j

k

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 17

Introduction Trees Tree traversals

More definitions
• The nodes with the same parent are called siblings
• The nodes with children are called internal nodes
• The nodes without children are the leaf nodes
• A path is a sequence of connected nodes
• Any node in the path from the root to a particular
node is its ancestors

• A node is a descendant of its ancestors
• A subtree is a tree rooted by a non-root node
• The depth of a node is the number of edges from root
• The height of a node is the number of edges from the
deepest descendant

• The height of a tree is the height of its root

r

a

d e

b

f

c

g

h i j

k

de
pt
h

he
ig
ht

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 17

Introduction Trees Tree traversals

Ordered trees

• A tree is ordered if there is an ordering between siblings. Typical examples
include:

– A tree representing a document (e.g., HTML) structure
– Parse trees
– (maybe) a family tree

• In many cases order is not important
– Class hierarchy in a object-oriented program
– The tree representing files in a computer

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 17

Introduction Trees Tree traversals

Binary trees
even more definitions

• Binary trees, where nodes can have at most two
children, have many applications

• Binary trees have a natural order, each child is either
a left child or a right child

• A binary tree is proper, or full if every node has either
two children or none

• In a complete binary tree, every level except possibly
the last, is completely filled, and all nodes at the last
level is at the left

• A perfect binary tree is a full binary tree whose leaf
nodes have the same depth

a

b

d

h i

e

j k

c

f g

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 17

Introduction Trees Tree traversals

Some properties of binary trees

For a binary tree with nℓ leaf, ni internal, n
nodes and with height h

• h+ 1 ⩽ n ⩽ 2h+1 − 1

• h ⩽ ni ⩽ 2h − 1

• 1 ⩽ nℓ ⩽ 2h

• log(n+ 1) − 1 ⩽ h ⩽ n− 1

• For any proper binary tree, nℓ = ni + 1

a

b

d

h i

e

j k

c

f

l m

g

n o

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 17

Introduction Trees Tree traversals

Binary tree example: expression trees
2× 3− (5+ 3)/2

−

×

2 3

/

+

5 3

2

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 17

Introduction Trees Tree traversals

Implementation of trees
general case: linked data structures

N-ary

…
data

links to children

Binary

data

left child right child

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 17

Introduction Trees Tree traversals

Implementation of trees
array implementation of binary trees

• Binary trees can also be implemented with arrays:
– the root node is stored at index 0

– the left child of the node at index i is stored at 2i+ 1

– the right child of the node at index i is stored at 2i+ 2

– the parent of the node at index i is at index ⌊(i− 1)/2⌋
• If the binary tree is complete, this representation
does not waste (much) space

a

b

d

h i

e

j k

c

f g

a

0

b

1

c

2

d

3

e

4

f

5

g

6

h

7

i

8

j

9

k

10 11 12 13 14 15

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 17

Introduction Trees Tree traversals

Breadth first traversal (level order)

r

a

d e

b

f

c

g

h i j

k
r a b c d e f g h i j k

def breadth_first(root):
queue = []
queue.append(root)
while queue:

node = queue.pop(0)
process the node
print(node.data)
for child in node.children:

queue.append(child)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 17

Introduction Trees Tree traversals

Pre-order traversal
r

a

d e

b

f

c

g

h i j

k
r a d e b f c g h i j k

def pre_order(node):
process the node
print(node.data)
for child in node.children:

pre_order(child)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 17

Introduction Trees Tree traversals

Example: pre-order in an expression tree
−

×

2 3

/

+

5 3

2

−(×(2 3) /(+(5 3) 2)))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 17

Introduction Trees Tree traversals

Post-order traversal
r

a

d e

b

f

c

g

h i j

k
d e a f b h i k j g c r

def post_order(node):
for child in node.children:

post_order(child)
process the node
print(node.data)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 13 / 17

Introduction Trees Tree traversals

Example: post-order in an expression tree
−

×

2 3

/

+

5 3

2

2 3 × 5 3 + 2 / −

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 14 / 17

Introduction Trees Tree traversals

In-order traversal

a

b

d

h i

e

j k

c

f g

h d i b j e k a f c g

def in_order(node):
in_order(node.left)
process the node
print(node.data)
in_order(node.right)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 17

Introduction Trees Tree traversals

Example: in-order in an expression tree
−

×

2 3

/

+

5 3

2

((2 × 3) − ((5 + 3) / 2))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 17

Introduction Trees Tree traversals

Summary

• Trees are hierarchical data structures useful in many applications
• We will often return to trees and properties of trees in the rest of the course
• Reading on trees: Goodrich, Tamassia, and Goldwasser (2013, chapter 8), and
optionally the chapter on search trees (Goodrich, Tamassia, and Goldwasser
2013, ch. 11)

Next:
• Heaps and priority queues
• Reading: Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 9)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 17

Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN:
9781118476734.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.1
blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.2

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.3

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.4

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.5

	Trees
	Introduction
	Why study trees

	Trees
	Definitions
	More definitions
	Ordered trees
	Binary trees
	Some properties of binary trees
	Binary tree example: expression trees
	Implementation of trees
	Implementation of trees

	Tree traversals
	Breadth first traversal (level order)
	Pre-order traversal
	Example: pre-order in an expression tree
	Post-order traversal
	Example: post-order in an expression tree
	In-order traversal
	Example: in-order in an expression tree
	Summary

	Appendix
	Acknowledgments, credits, references

