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Introduction Trees Tree traversals

Why study trees

• A tree is a, hierarchical, non-linear data structure useful in many algorithms
• We have already resorted to descriptions using trees (e.g., recursion trace)
• A tree is a graphwith certain properties
• It is also very common in (computational) linguistics:

– Parse trees: representing syntactic structure of sentences
– Language trees: representing the historical relations between languages
– Decision trees: a well-known algorithm for machine learning, also used for

many NLP problems
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Definitions

• A tree is a set of nodes organized
hierarchically with the following
properties:

– If a tree is non-empty, it has a
special node called root node

– Except the root node, every node
in the tree has a unique parent (all
nodes except the root are children
of another node)

• Alternatively, we can define a tree
recursively:

– The empty set of nodes is a tree
– Otherwise a tree contains a root

with sub-trees as its children
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More definitions
• The nodes with the same parent are called siblings
• The nodes with children are called internal nodes
• The nodes without children are the leaf nodes
• A path is a sequence of connected nodes
• Any node in the path from the root to a particular
node is its ancestors

• A node is a descendant of its ancestors
• A subtree is a tree rooted by a non-root node
• The depth of a node is the number of edges from root
• The height of a node is the number of edges from the
deepest descendant

• The height of a tree is the height of its root
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Ordered trees

• A tree is ordered if there is an ordering between siblings. Typical examples
include:

– A tree representing a document (e.g., HTML) structure
– Parse trees
– (maybe) a family tree

• In many cases order is not important
– Class hierarchy in a object-oriented program
– The tree representing files in a computer
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Binary trees
even more definitions

• Binary trees, where nodes can have at most two
children, have many applications

• Binary trees have a natural order, each child is either
a left child or a right child

• A binary tree is proper, or full if every node has either
two children or none

• In a complete binary tree, every level except possibly
the last, is completely filled, and all nodes at the last
level is at the left

• A perfect binary tree is a full binary tree whose leaf
nodes have the same depth
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Some properties of binary trees

For a binary tree with nℓ leaf, ni internal, n
nodes and with height h

• h+ 1 ⩽ n ⩽ 2h+1 − 1

• h ⩽ ni ⩽ 2h − 1

• 1 ⩽ nℓ ⩽ 2h

• log(n+ 1) − 1 ⩽ h ⩽ n− 1

• For any proper binary tree, nℓ = ni + 1
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Binary tree example: expression trees
2× 3− (5+ 3)/2
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Implementation of trees
general case: linked data structures

N-ary

…
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links to children

Binary

data

left child right child
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Implementation of trees
array implementation of binary trees

• Binary trees can also be implemented with arrays:
– the root node is stored at index 0

– the left child of the node at index i is stored at 2i+ 1

– the right child of the node at index i is stored at 2i+ 2

– the parent of the node at index i is at index ⌊(i− 1)/2⌋
• If the binary tree is complete, this representation
does not waste (much) space
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Breadth first traversal (level order)
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def breadth_first(root):
queue = []
queue.append(root)
while queue:

node = queue.pop(0)
# process the node
print(node.data)
for child in node.children:

queue.append(child)
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Pre-order traversal
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def pre_order(node):
# process the node
print(node.data)
for child in node.children:

pre_order(child)
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Example: pre-order in an expression tree
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Post-order traversal
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def post_order(node):
for child in node.children:

post_order(child)
# process the node
print(node.data)
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Example: post-order in an expression tree
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In-order traversal
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def in_order(node):
in_order(node.left)
# process the node
print(node.data)
in_order(node.right)
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Example: in-order in an expression tree
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Summary

• Trees are hierarchical data structures useful in many applications
• We will often return to trees and properties of trees in the rest of the course
• Reading on trees: Goodrich, Tamassia, and Goldwasser (2013, chapter 8), and
optionally the chapter on search trees (Goodrich, Tamassia, and Goldwasser
2013, ch. 11)

Next:
• Heaps and priority queues
• Reading: Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 9)
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