
Sorting
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2024/25

version: 95def0f @2024-11-04

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Why study sorting

• Sorting is one of the most studied (and common) problems in computing
• It is important to understand strengths and weaknesses of algorithms for

sorting
• Many problems look like sorting. Learning sorting algorithms will help you

solve other problems
• Available implementations are highly optimized (we are not just talking

about asymptotic performance guarantees)
• In some (rare) cases, implementing your own sorting algorithm may be

beneficial

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 1 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Bubble sort

• We start with an ‘educational’ sorting algorithm
• Bubble sort is easy to understand, but performs bad – not used in practice
• We start from bubble sort, and see the improvements over it
• The idea is simple:

– compare first two elements, swap if not in order
– shift and compare the next two elements, again swap if needed
– when you reach to the end, repeat the process from the beginning unless there

were no swaps in the last iteration

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Bubble sort
demonstration

89 67 88 12 72 76 93 57

swapped = True
n = len(seq)
while swapped:

swapped = False
for i in range(n - 1):

if seq[i] > seq[i + 1]:
seq[i], seq[i + 1]\

= seq[i + 1], seq[i]
swapped = True

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Bubble sort
summary

• Worst case: O(n2)
O(n2) comparisons, O(n2) swaps

• Average case: O(n2)
O(n2) comparisons, O(n2) swaps

• Best case: O(n)
O(n) comparisons, O(1) swaps

• Space complexity: O(1)

• There are more concerns than performance
– Many swaps
– Bubble sort is in-place

• The repetitive algorithm pattern is common

swapped = True
n = len(seq)
while swapped:

swapped = False
for i in range(n - 1):

if seq[i] > seq[i + 1]:
seq[i], seq[i + 1]\

= seq[i + 1], seq[i]
swapped = True

• Not practical – it is not used
in practice

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Insertion sort

• Insertion sort is one of the simpler sorting algorithms
• It is easy to understand, and reasonably fast for sorting short sequences
• On longer sequences, it performs worse than more advanced algorithms, like

merge sort or quicksort (we will study those later)
• The general idea simple:

– assume the elements arrive one by one, and we have a sorted sequence
– insert the element to the correct position:

• shift all elements larger than the new one to the right
• place the new element in its correct place

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Insertion sort
demonstration 1

88 89 67 88 12 72 76 93 5789

67
i=1

sorted sorted

for i in range(1, len(seq)):
cur = seq[i]
j = i
while seq[j - 1] > cur\

and j in range(1,i+1):
seq[j] = seq[j - 1]
j -= 1

seq[j] = cur

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Insertion sort
demonstration 2

88 89 67 88 12 72 76 93 5789

67
i=1

sorted sorted

for i in range(1, len(seq)):
cur = seq[i]
j = i
while seq[j - 1] > cur\

and j in range(1,i+1):
seq[j] = seq[j - 1]
j -= 1

seq[j] = cur

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Insertion sort
demonstration 3

88 89 67 88 12 72 76 93 5789

67
i=1

sorted sorted

for i in range(1, len(seq)):
cur = seq[i]
j = i
while seq[j - 1] > cur\

and j in range(1,i+1):
seq[j] = seq[j - 1]
j -= 1

seq[j] = cur

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Insertion sort
demonstration 4

88 67 89 88 12 72 76 93 57

88

8988

i=2

sorted sorted

for i in range(1, len(seq)):
cur = seq[i]
j = i
while seq[j - 1] > cur\

and j in range(1,i+1):
seq[j] = seq[j - 1]
j -= 1

seq[j] = cur

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Insertion sort
demonstration 5

88 67 89 88 12 72 76 93 57

88

8988

i=2

sorted sorted

for i in range(1, len(seq)):
cur = seq[i]
j = i
while seq[j - 1] > cur\

and j in range(1,i+1):
seq[j] = seq[j - 1]
j -= 1

seq[j] = cur

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Insertion sort
demonstration 6

88 67 89 88 12 72 76 93 57

88

8988

i=2

sorted sorted

for i in range(1, len(seq)):
cur = seq[i]
j = i
while seq[j - 1] > cur\

and j in range(1,i+1):
seq[j] = seq[j - 1]
j -= 1

seq[j] = cur

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Insertion sort
demonstration 7

88 67 89 88 12 72 76 93 57

88

8988

i=2

sorted sorted

for i in range(1, len(seq)):
cur = seq[i]
j = i
while seq[j - 1] > cur\

and j in range(1,i+1):
seq[j] = seq[j - 1]
j -= 1

seq[j] = cur

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Insertion sort
performance

• Worst case: O(n2)
O(n2) comparisons, O(n2) swaps

• Average case: O(n2)
O(n2) comparisons, O(n2) swaps

• Best case: O(n)
O(n) comparisons, O(1) swaps

• Space complexity: O(1)

• In practice, insertion sort is faster
than the bubble sort (and also
selection sort)

for i in range(1, len(seq)):
cur = seq[k]
j = i
while seq[j - 1] > cur\

and j in range(1,i+1):
seq[j] = seq[j - 1]
j -= 1

seq[j] = cur

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Insertion sort
summary

• Insertion sort is simple
• It is efficient for short sequences
• For long sequences it is much worse than more advanced algorithms like

merge sort or quicksort (coming next)
• It is in-place
• It is online: it can sort items as they arrive
• It is stable: it does not swap elements with equal keys
• It is adaptive: faster if order of elements is closer to the sorted sequence

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Merge sort
Introduction

• Merge sort is a divide-and-conquer algorithm for sorting
• It is relatively easy to understand (once you get your head around recursion)
• It has good asymptotic performance
• There are many practical cases where merge sort is used
• Basic idea is divide-and-conquer:

– split the sequence
– sort the subsequences
– merge the sorted lists

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Merge sort
demonstration – divide

89 67 88 12 72 76 93 57

89 67 88 12

89 67

89 67

88 12

88 12

72 76 93 57

72 76

72 76

93 57

93 57

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Merge sort
demonstration – combine

12 57 67 72 76 88 89 93

12 67 88 89

67 89

89 67

12 88

88 12

57 72 76 93

72 76

72 76

57 93

93 57

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Merging sequences

s1, s2: sequences to be merged
s: target sequence
i, j = 0, 0
n = len(s1) + len(s2)
while i + j < n:

if j == len(s2) or \
i < len(s1) and s1[i] < s2[j]:

s[i+j] = s1[i]
i += 1

else:
s[i+j] = s2[j]
j += 1

• Keep two indices on both sequences,
starting from the beginning

• Pick the smallest, place it in the
target sequence

• The algorithm requires O(n) steps
to complete

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Complexity of the merge sort

89 67 88 12 72 76 93 57

89 67 88 12

89 67

89 67

88 12

88 12

72 76 93 57

72 76

72 76

93 57

93 57

logn splits

4 merges, size 2

2 merges, size 4

1 merge, size 8

O(n logn)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 13 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Merge sort
the implementation

def merge_sort(s):
n = len(s)
if n <= 1: return
s1, s2 = s[:n//2], s[n//2:]
merge_sort(s1)
merge_sort(s2)
merge(s1, s2, s)

• Once we have merge(), the rest is trivial:
– Split the array into two
– Recursively sort both sides
– Stop when the input is length 1

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 14 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Merge sort: summary

• Straightforward application of divide-and-conquer
• Worst case O(n logn) complexity (best/average cases are the same)
• Merge sort is not in-place: requires O(n) additional space
• It is particularly useful for settings with low random-access memory, or

sequential access
• Merge sort is stable
• It is a well studied algorithm, there are many variants (in-place,

non-recursive)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

A short divergence to complexity
the difference between O(n2) and n logn

n n logn n2

2 2 4

8 24 64

64 384 4096

1K 10 240 1 048 576

1M 20 971 520 1 099 511 627 776

1G 32 212 254 720 1 152 921 504 606 846 976

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

A short divergence to complexity
the difference between O(n2) and n logn

100 200 300 400 500 600 700 800 900 1,000

0

200,000

400,000

600,000

800,000

1,000,000

n

f(
n)

O(n logn)

O(n2)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Quicksort
introduction

• Quicksort is another popular divide-and-conquer sorting algorithm
• The main difference from the merge sort is that big the part of the work is

done before splitting
• Its worse time complexity is O(n2), but in practice it performs better than

merge sort on average
• General idea: pick a pivot p, and divide the sequence into three parts as

L smaller than the pivot p
E equal to the pivot p
G larger than the pivot p

• sort L and G recursively
• combination is simple concatenation

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Quicksort
demonstration – divide

89 67 88 12 57 76 93 72

67 12 57

12 67

89 88 76 93

89 88 76

89 88

89

At each divide step
• Pick a pivot
• Recursively call quicksort twice

L for items less than the pivot
G for items greater than the pivot

• O(n) operations

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 18 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Quicksort
demonstration – combine

89 67 88 12 57 76 93 7212 57 67 72 76 88 89 93

67 12 5712 57 67

12 67

89 88 76 9376 88 89 93

89 88 7676 88 89

89 8888 89

89

At each combine step:
• Simply concatenate

L the sorted items less than p
E items equal to p
G the sorted items greater than p

• No need for O(n) merging

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 19 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Quicksort
Python three-liner implementation

def qsort(seq):
if len(seq <= 1): return seq
return qsort([x for x in seq if x < seq[-1]])\ # < p

+ [x for x in seq if x == seq[-1]]\ # = p
+ qsort([x for x in seq if x > seq[-1]]) # > p

• Practical implementations are not very different
• Common improvements include

– in-place sorting
– selecting the pivot more carefully

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Quicksort
analysis

• Similar to the merge sort, quicksort performs O(n)
operations at each level in recursion

• The overall complexity is proportional to n× ℓ,
where ℓ is depth of the tree

• The recursion tree of merge sort is balanced, so depth
is logn.

• For quicksort, we do not have a balanced-tree
guarantee

• In the worst case, the depth of the tree can be n,
resulting in O(n2) complexity

ABCDEF

ABCDE

ABCD

ABC

AB

A

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 21 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Quicksort
average-case complexity and preventing the worst case

• Worst case of the quicksort is when the input sequence is sorted
• If the input sequence is (approximately) random, the expected number of

elements in each divide is n/2
• To reduce the probability of worst case, randomized quicksort picks the pivot

randomly
• Best case happens if we pick the median of the sequence as the pivot, but

finding median already requires O(n logn) (or O(n), but not very practical)
• A common approach is picking three values (typically first, middle and last)

from the sequence, and selecting the ‘median of three’ as the pivot

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Quicksort
summary

• Complexity: O(n logn) average, O(n2) worst
• Despite its worst-case O(n2) complexity, quicksort is faster than merge sort on

average (in practice)
• The algorithm can easily be implemented in-place (in-place version is more

common)
• Quicksort is not stable
• Quicksort is one of the most-studied algorithms: there are many variants, its

properties are well known

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 23 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Sorting algorithms so far, and the lower bound

Algorithm worst average best memory in-place stable
Bubble sort n2 n2 n 1 yes yes
Insertion sort n2 n2 n 1 yes yes
Merge sort n logn n logn n logn n no yes
Quicksort n2 n logn n logn logn yes no

• Can we do better than O(n logn)?
• If our sorting algorithms requires comparing individual elements, the answer

turns out to be ‘no’
• Lower bound of worst-case sorting is Ω(n logn)

• In some special cases, linear-time complexity is possible

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 24 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Bucket sort
introduction

• Bucket sort puts elements of the input into a pre-defined number of ordered
‘buckets‘

• Elements in each bucket is sorted (typically using insertion sort)
• We can than retrieve the sorted elements by visiting each bucket
• The bucket sort does not compare elements to each other when deciding which

bucket to place them in
• In special cases, this results in O(n) worst-case complexity

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 25 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Bucket sort
demonstration

89 67 88 12 57 76 93 72 64 53 89 54 43 92 47 21 4

0-9
10-19
20-29
30-39
40-49
50-59
60-69
70-79
80-89
90-99

89

67

88 89

12

57

76

93

72 76
64 67
53 57

89

54 57
43

92 93

47

21

4

• While placing the elements into the buckets, no
comparisons between the keys

• Inside the buckets worst-case O(n2) (insertion sort)
• What if we had as many buckets as the keys?

– n insertion operations
– n retrieval operations
– O(n) sorting time

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 26 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Radix sort

• In a large number of cases, we want to sort objects with multiple keys
• In such cases, we define the order of key pairs as
(k1, l1) < (k2, l2) if k1 < k2, or k1 = k2 and l1 < l2

• This definition can be generalized to key tuples of any length
• This ordering is known as lexicographic or dictionary order
• Radix sort is the name for the technique that uses multiple stable bucket sorts

for this purpose

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 27 / 28

Introduction Bubble sort Insertion sort Merge sort Quicksort Bucket/radix sort

Summary
• Sorting is an important and well-studied computational problem
• Most sorting algorithms/applications used in practice are highly optimized,

often based on multiple basic algorithms
• Naive sorting algorithms run in O(n2) time
• Lower bound on worst-case sorting time is Ω(n logn), divide-and-conquer

algorithms achieve this
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)
• And a fun way to see sorting in action:

https://www.youtube.com/user/AlgoRythmics
Next:

• Trees
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 8)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 28 / 28

https://www.youtube.com/user/AlgoRythmics

Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN:
9781118476734.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.1
blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.2

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.3

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.4

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.5

	Sorting
	Introduction
	Why study sorting

	Bubble sort
	Bubble sort
	Bubble sort
	Bubble sort

	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort
	Insertion sort

	Merge sort
	Merge sort
	Merge sort
	Merge sort
	Merging sequences
	Complexity of the merge sort
	Merge sort
	Merge sort: summary
	A short divergence to complexity
	A short divergence to complexity

	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Quicksort
	Sorting algorithms so far, and the lower bound

	Bucket/radix sort
	Bucket sort
	Bucket sort
	Radix sort

	
	Summary

	Appendix
	Acknowledgments, credits, references

