
Algorithmic patterns
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2024/25

version: 5070ff9 @2024-10-30



Introduction More on recursion Some common algorithm patterns

Overview

• Some common approaches to algorithm design
– Revisiting recursion
– Brute force
– Divide and conquer
– Greedy algorithms
– Dynamic programming

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 1 / 22



Introduction More on recursion Some common algorithm patterns

Recursion
linear search again

Your task from the first lecture: writing a recursive linear search.

• Recursion is relatively easy:
if val == seq[0]:

return i
else:

return rl_search(seq[1:], val, i+1)

• And we need a base case:
if not seq: # empty sequence

return None

the complete code
1 def rl_search(seq, val, i=0):
2 if not seq:
3 return None
4 if val == seq[0]:
5 return i
6 return rl_search(seq[1:], val, i+1)

Can we improve this?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 22



Introduction More on recursion Some common algorithm patterns

Recursion
linear search again

Your task from the first lecture: writing a recursive linear search.

• Recursion is relatively easy:
if val == seq[0]:

return i
else:

return rl_search(seq[1:], val, i+1)

• And we need a base case:
if not seq: # empty sequence

return None

the complete code
1 def rl_search(seq, val, i=0):
2 if not seq:
3 return None
4 if val == seq[0]:
5 return i
6 return rl_search(seq[1:], val, i+1)

Can we improve this?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 22



Introduction More on recursion Some common algorithm patterns

Recursion
linear search again

Your task from the first lecture: writing a recursive linear search.

• Recursion is relatively easy:
if val == seq[0]:

return i
else:

return rl_search(seq[1:], val, i+1)

• And we need a base case:
if not seq: # empty sequence

return None

the complete code
1 def rl_search(seq, val, i=0):
2 if not seq:
3 return None
4 if val == seq[0]:
5 return i
6 return rl_search(seq[1:], val, i+1)

Can we improve this?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 22



Introduction More on recursion Some common algorithm patterns

Recursion
linear search again

Your task from the first lecture: writing a recursive linear search.

• Recursion is relatively easy:
if val == seq[0]:

return i
else:

return rl_search(seq[1:], val, i+1)

• And we need a base case:
if not seq: # empty sequence

return None

the complete code
1 def rl_search(seq, val, i=0):
2 if not seq:
3 return None
4 if val == seq[0]:
5 return i
6 return rl_search(seq[1:], val, i+1)

Can we improve this?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 22



Introduction More on recursion Some common algorithm patterns

Recursion
linear search again

Your task from the first lecture: writing a recursive linear search.

• Recursion is relatively easy:
if val == seq[0]:

return i
else:

return rl_search(seq[1:], val, i+1)

• And we need a base case:
if not seq: # empty sequence

return None

the complete code
1 def rl_search(seq, val, i=0):
2 if not seq:
3 return None
4 if val == seq[0]:
5 return i
6 return rl_search(seq[1:], val, i+1)

Can we improve this?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 22



Introduction More on recursion Some common algorithm patterns

Recursion
linear search again

Your task from the first lecture: writing a recursive linear search.

• Recursion is relatively easy:
if val == seq[0]:

return i
else:

return rl_search(seq[1:], val, i+1)

• And we need a base case:
if not seq: # empty sequence

return None

the complete code
1 def rl_search(seq, val, i=0):
2 if not seq:
3 return None
4 if val == seq[0]:
5 return i
6 return rl_search(seq[1:], val, i+1)

Can we improve this?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 22



Introduction More on recursion Some common algorithm patterns

How does this recursion work
recursion trace/graph

rl_search([1,3,6,2],2,0)

rl_search([3,6,2],2,1)

rl_search([6,2],2,2)

rl_search([2],2,3)

return 3

return 3

return 3

return 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 22



Introduction More on recursion Some common algorithm patterns

How does this recursion work
recursion trace/graph

rl_search([1,3,6,2],2,0)

rl_search([3,6,2],2,1)

rl_search([6,2],2,2)

rl_search([2],2,3)

return 3

return 3

return 3

return 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 22



Introduction More on recursion Some common algorithm patterns

How does this recursion work
recursion trace/graph

rl_search([1,3,6,2],2,0)

rl_search([3,6,2],2,1)

rl_search([6,2],2,2)

rl_search([2],2,3)

return 3

return 3

return 3

return 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 22



Introduction More on recursion Some common algorithm patterns

How does this recursion work
recursion trace/graph

rl_search([1,3,6,2],2,0)

rl_search([3,6,2],2,1)

rl_search([6,2],2,2)

rl_search([2],2,3)

return 3

return 3

return 3

return 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 22



Introduction More on recursion Some common algorithm patterns

How does this recursion work
recursion trace/graph

rl_search([1,3,6,2],2,0)

rl_search([3,6,2],2,1)

rl_search([6,2],2,2)

rl_search([2],2,3)

return 3

return 3

return 3

return 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 22



Introduction More on recursion Some common algorithm patterns

How does this recursion work
recursion trace/graph

rl_search([1,3,6,2],2,0)

rl_search([3,6,2],2,1)

rl_search([6,2],2,2)

rl_search([2],2,3)

return 3

return 3

return 3

return 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 22



Introduction More on recursion Some common algorithm patterns

How does this recursion work
recursion trace/graph

rl_search([1,3,6,2],2,0)

rl_search([3,6,2],2,1)

rl_search([6,2],2,2)

rl_search([2],2,3)

return 3

return 3

return 3

return 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 22



Introduction More on recursion Some common algorithm patterns

How does this recursion work
recursion trace/graph

rl_search([1,3,6,2],2,0)

rl_search([3,6,2],2,1)

rl_search([6,2],2,2)

rl_search([2],2,3)

return 3

return 3

return 3

return 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 22



Introduction More on recursion Some common algorithm patterns

Recursion: practical issues
recursion depth and tail recursion

• Each function call requires some bookkeeping
• Compilers/interpreters allocate space on a stack for the bookkeeping for each

function call
• Most environments limit the number of recursive calls: long chains of

recursion are likely to be caused by programming errors
• Tail recursion (e.g., our recursive search example) is easy to convert to iteration
• It is also easy to optimize, and optimized by many compilers (not by the

Python interpreter)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 22



Introduction More on recursion Some common algorithm patterns

Another recursive example
every algorithm course is required to introduce Fibonacci numbers

Fibonacci numbers are defined as:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 for n > 1

• Recursion is common in math, and
maps well to the recursive
algorithms

1 def fib(n):
2 if n <= 1:
3 return n
4 return fib(n-2) + fib(n-1)

• Note that we now have binary
recursion, each function call creates
two calls to self

• We follow the math exactly, but is
this code efficient?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 22



Introduction More on recursion Some common algorithm patterns

Another recursive example
every algorithm course is required to introduce Fibonacci numbers

Fibonacci numbers are defined as:

F0 = 0

F1 = 1

Fn = Fn−1 + Fn−2 for n > 1

• Recursion is common in math, and
maps well to the recursive
algorithms

1 def fib(n):
2 if n <= 1:
3 return n
4 return fib(n-2) + fib(n-1)

• Note that we now have binary
recursion, each function call creates
two calls to self

• We follow the math exactly, but is
this code efficient?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 22



Introduction More on recursion Some common algorithm patterns

Visualizing binary recursion

fib(4)

fib(2)

fib(1) fib(0)

fib(3)

fib(2)

fib(1) fib(0)

fib(1)

01

1

01

1 1

2

3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 22



Introduction More on recursion Some common algorithm patterns

Complexity of (naive) Fibonacci algorithm
7

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

recursion tree for fib(7)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 22



Introduction More on recursion Some common algorithm patterns

Brute force

• In some cases, we may need to enumerate all possible cases (e.g., to find the
best solution)

• Common in combinatorial problems
• Often intractable, practical only for small input sizes
• It is also typically the beginning of finding a more efficient approach

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 22



Introduction More on recursion Some common algorithm patterns

Brute force
example: finding all possible ways to segment a string

• Segmentation is prevalent in CL
– Examples include finding words: tokenization (particularly for writing systems

that do not use white space)
– Finding sub-word units (e.g., morphemes, or more specialized application:

compound splitting)
– Psycholinguistics: how do people extract words from continuous speech?

• We consider the following problem:
– Given a metric or score to determine the ”best” segmentation
– We enumerate all possible ways to segment, pick the one with the best score

• How can we enumerate all possible segmentations of a string?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 22



Introduction More on recursion Some common algorithm patterns

Brute force
example: finding all possible ways to segment a string

• Segmentation is prevalent in CL
– Examples include finding words: tokenization (particularly for writing systems

that do not use white space)
– Finding sub-word units (e.g., morphemes, or more specialized application:

compound splitting)
– Psycholinguistics: how do people extract words from continuous speech?

• We consider the following problem:
– Given a metric or score to determine the ”best” segmentation
– We enumerate all possible ways to segment, pick the one with the best score

• How can we enumerate all possible segmentations of a string?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
a recursive solution

1 def segment_r(seq):
2 segs = []
3 if len(seq) == 1:
4 return [[seq]]
5 for seg in segment_r(seq[1:]):
6 segs.append([seq[0]] + seg)
7 segs.append([seq[0] + seg[0]] + seg[1:])
8 return segs

• Can you think of a non-recursive solution?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
a recursive solution

1 def segment_r(seq):
2 segs = []
3 if len(seq) == 1:
4 return [[seq]]
5 for seg in segment_r(seq[1:]):
6 segs.append([seq[0]] + seg)
7 segs.append([seq[0] + seg[0]] + seg[1:])
8 return segs

• Can you think of a non-recursive solution?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Segmentation
example/analysis

abcd

a bcd

b cd

c d

[[a]]

[[b]]

[[c]] [[d]]

[[cd], [c, d]]

[[bcd], [bc, d],
[b, cd], [b, c, d]]

[[abcd], [abc, d], [ab, cd], [ab, c, d],
[a, bcd], [a, bc, d], [a, b, cd], [a, b, c, d]]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 22



Introduction More on recursion Some common algorithm patterns

Enumerating segmentations
sketch of a non-recursive solution

s e g m e n t t h i s
0 0 0 0 0 0 1 0 0 0

segment this

s e g m e n t t h i s
0 0 1 0 0 1 0 0 1 0

seg men tth is

• ‘1’ means there is a boundary at this position
• Problem is now enumerating all possible binary strings of length n− 1

(this is binary counting)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 22



Introduction More on recursion Some common algorithm patterns

Divide and conquer

• The general idea is dividing the problem into smaller parts until it becomes
trivial to solve

• Once small parts are solved, the results are combined
• Goes well with recursion
• We have already seen a particular flavor: binary search
• The algorithms like binary search are sometimes called decrease and conquer

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 13 / 22



Introduction More on recursion Some common algorithm patterns

Divide and conquer
General idea

Big problem

Subproblem 1 Subproblem N…

Solution 1 Solution N…

Combined solution

divide

conquer

combine

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 14 / 22



Introduction More on recursion Some common algorithm patterns

Divide and conquer
an example: nearest neighbors (only a sketch)

• Task: find the closest two points

• Direct solution:
20× 20 = 400 comparisons1

• Divide
• Solve separately (conquer):
10× 10+ 10× 10 = 200 comparisons

• Combine: pick the minimum of the
individual solutions

n = 20n = 10 n = 10

assume we can divide into half easily
overlooking the comparisons across the division

• Gain is higher when n is larger, and we divide further

1Precisely, (20x19)/2 = 190. In this class we focus on ‘order’ of operations, rather than the exact numbers. And, the order of gain by division is the same.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 22



Introduction More on recursion Some common algorithm patterns

Divide and conquer
an example: nearest neighbors (only a sketch)

• Task: find the closest two points
• Direct solution:
20× 20 = 400 comparisons1

• Divide
• Solve separately (conquer):
10× 10+ 10× 10 = 200 comparisons

• Combine: pick the minimum of the
individual solutions

n = 20n = 10 n = 10

assume we can divide into half easily
overlooking the comparisons across the division

• Gain is higher when n is larger, and we divide further

1Precisely, (20x19)/2 = 190. In this class we focus on ‘order’ of operations, rather than the exact numbers. And, the order of gain by division is the same.
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 22



Introduction More on recursion Some common algorithm patterns

Divide and conquer
an example: nearest neighbors (only a sketch)

• Task: find the closest two points
• Direct solution:
20× 20 = 400 comparisons1

• Divide

• Solve separately (conquer):
10× 10+ 10× 10 = 200 comparisons

• Combine: pick the minimum of the
individual solutions

n = 20n = 10 n = 10

assume we can divide into half easily
overlooking the comparisons across the division

• Gain is higher when n is larger, and we divide further

1Precisely, (20x19)/2 = 190. In this class we focus on ‘order’ of operations, rather than the exact numbers. And, the order of gain by division is the same.
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 22



Introduction More on recursion Some common algorithm patterns

Divide and conquer
an example: nearest neighbors (only a sketch)

• Task: find the closest two points
• Direct solution:
20× 20 = 400 comparisons1

• Divide
• Solve separately (conquer):
10× 10+ 10× 10 = 200 comparisons

• Combine: pick the minimum of the
individual solutions

n = 20n = 10 n = 10

assume we can divide into half easily
overlooking the comparisons across the division

• Gain is higher when n is larger, and we divide further

1Precisely, (20x19)/2 = 190. In this class we focus on ‘order’ of operations, rather than the exact numbers. And, the order of gain by division is the same.
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 22



Introduction More on recursion Some common algorithm patterns

Divide and conquer
an example: nearest neighbors (only a sketch)

• Task: find the closest two points
• Direct solution:
20× 20 = 400 comparisons1

• Divide
• Solve separately (conquer):
10× 10+ 10× 10 = 200 comparisons

• Combine: pick the minimum of the
individual solutions

n = 20n = 10 n = 10

assume we can divide into half easily
overlooking the comparisons across the division

• Gain is higher when n is larger, and we divide further

1Precisely, (20x19)/2 = 190. In this class we focus on ‘order’ of operations, rather than the exact numbers. And, the order of gain by division is the same.
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 22



Introduction More on recursion Some common algorithm patterns

Divide and conquer
summary

• This is probably the most common pattern
• Divide and conquer does not always yield good results, the cost of merging

should be less than the gain from the division(s)
• Many of the important algorithms fall into this category:

– merge sort and quick sort (coming soon)
– integer multiplication
– matrix multiplication
– fast Fourier transform (FFT)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 22



Introduction More on recursion Some common algorithm patterns

Greedy algorithms

• An algorithm is greedy if it optimizes a local constraint
• For some problems, greedy algorithms result in correct solutions
• In others they may result in ‘good enough’ solutions
• If they work, they are efficient
• An important class of graph algorithms fall into this category (e.g., finding

shortest paths, scheduling)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 22



Introduction More on recursion Some common algorithm patterns

Greedy algorithms
a simple example: ‘change making’

• We want to produce minimum number of coins for a particular sum s

1. Pick the largest coin c <= s

2. set s = s− c

3. repeat 1 & 2 until s = 0

• Is this algorithm correct?
• Think about coins of 10, 30, 40 and apply the algorithm for the sum value of 60
• Is it correct if the coin values were limited Euro coins?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 18 / 22



Introduction More on recursion Some common algorithm patterns

Greedy algorithms
a simple example: ‘change making’

• We want to produce minimum number of coins for a particular sum s

1. Pick the largest coin c <= s

2. set s = s− c

3. repeat 1 & 2 until s = 0

• Is this algorithm correct?

• Think about coins of 10, 30, 40 and apply the algorithm for the sum value of 60
• Is it correct if the coin values were limited Euro coins?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 18 / 22



Introduction More on recursion Some common algorithm patterns

Greedy algorithms
a simple example: ‘change making’

• We want to produce minimum number of coins for a particular sum s

1. Pick the largest coin c <= s

2. set s = s− c

3. repeat 1 & 2 until s = 0

• Is this algorithm correct?
• Think about coins of 10, 30, 40 and apply the algorithm for the sum value of 60

• Is it correct if the coin values were limited Euro coins?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 18 / 22



Introduction More on recursion Some common algorithm patterns

Greedy algorithms
a simple example: ‘change making’

• We want to produce minimum number of coins for a particular sum s

1. Pick the largest coin c <= s

2. set s = s− c

3. repeat 1 & 2 until s = 0

• Is this algorithm correct?
• Think about coins of 10, 30, 40 and apply the algorithm for the sum value of 60
• Is it correct if the coin values were limited Euro coins?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 18 / 22



Introduction More on recursion Some common algorithm patterns

Dynamic programming

• Dynamic programming is a method to save earlier results to reduce
computation

• It is sometimes called memoization (it is not a typo)
• Again, a large number of algorithms we use fall into this category, including

common parsing algorithms

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 19 / 22



Introduction More on recursion Some common algorithm patterns

Dynamic programming
example: Fibonacci

1 def memofib(n, memo = {0: 0, 1:1}):
2 if n not in memo:
3 memo[n] = memofib(n-1) + memofib(n-2)
4 return memo[n]

• We save the results calculated in a dictionary,
• if the result is already in the dictionary, we return without recursion
• Otherwise we calculate recursively as before
• The difference is big, but there is also a ‘neater’ solution without (explicit)

memoization

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 22



Introduction More on recursion Some common algorithm patterns

Complexity of Fibonacci algorithm with dynamic pogramming
7

6

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

4

3

2

1 0

1

2

1 0

5

4

3

2

1 0

1

2

1 0

3

2

1 0

1

recursion tree for fib(7)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 21 / 22



Introduction More on recursion Some common algorithm patterns

Summary

• We saw a few general approaches to (efficient) algorithm design

• Designing algorithms is not a mechanical procedure: it requires creativity
• There are other common patterns, including

– Backtracking, Branch-and-bound
– Randomized algorithms
– Distributed algorithms (sometime called swarm optimization)
– Transformation

• Designing algorithms is difficult (possibly, not as difficult as analyzing them)
Next:

• Sorting
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 22



Introduction More on recursion Some common algorithm patterns

Summary

• We saw a few general approaches to (efficient) algorithm design
• Designing algorithms is not a mechanical procedure: it requires creativity

• There are other common patterns, including

– Backtracking, Branch-and-bound
– Randomized algorithms
– Distributed algorithms (sometime called swarm optimization)
– Transformation

• Designing algorithms is difficult (possibly, not as difficult as analyzing them)
Next:

• Sorting
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 22



Introduction More on recursion Some common algorithm patterns

Summary

• We saw a few general approaches to (efficient) algorithm design
• Designing algorithms is not a mechanical procedure: it requires creativity
• There are other common patterns, including

– Backtracking, Branch-and-bound
– Randomized algorithms
– Distributed algorithms (sometime called swarm optimization)
– Transformation

• Designing algorithms is difficult (possibly, not as difficult as analyzing them)
Next:

• Sorting
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 22



Introduction More on recursion Some common algorithm patterns

Summary

• We saw a few general approaches to (efficient) algorithm design
• Designing algorithms is not a mechanical procedure: it requires creativity
• There are other common patterns, including

– Backtracking, Branch-and-bound

– Randomized algorithms
– Distributed algorithms (sometime called swarm optimization)
– Transformation

• Designing algorithms is difficult (possibly, not as difficult as analyzing them)
Next:

• Sorting
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 22



Introduction More on recursion Some common algorithm patterns

Summary

• We saw a few general approaches to (efficient) algorithm design
• Designing algorithms is not a mechanical procedure: it requires creativity
• There are other common patterns, including

– Backtracking, Branch-and-bound
– Randomized algorithms

– Distributed algorithms (sometime called swarm optimization)
– Transformation

• Designing algorithms is difficult (possibly, not as difficult as analyzing them)
Next:

• Sorting
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 22



Introduction More on recursion Some common algorithm patterns

Summary

• We saw a few general approaches to (efficient) algorithm design
• Designing algorithms is not a mechanical procedure: it requires creativity
• There are other common patterns, including

– Backtracking, Branch-and-bound
– Randomized algorithms
– Distributed algorithms (sometime called swarm optimization)

– Transformation
• Designing algorithms is difficult (possibly, not as difficult as analyzing them)

Next:
• Sorting
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 22



Introduction More on recursion Some common algorithm patterns

Summary

• We saw a few general approaches to (efficient) algorithm design
• Designing algorithms is not a mechanical procedure: it requires creativity
• There are other common patterns, including

– Backtracking, Branch-and-bound
– Randomized algorithms
– Distributed algorithms (sometime called swarm optimization)
– Transformation

• Designing algorithms is difficult (possibly, not as difficult as analyzing them)
Next:

• Sorting
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 22



Introduction More on recursion Some common algorithm patterns

Summary

• We saw a few general approaches to (efficient) algorithm design
• Designing algorithms is not a mechanical procedure: it requires creativity
• There are other common patterns, including

– Backtracking, Branch-and-bound
– Randomized algorithms
– Distributed algorithms (sometime called swarm optimization)
– Transformation

• Designing algorithms is difficult (possibly, not as difficult as analyzing them)

Next:
• Sorting
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 22



Introduction More on recursion Some common algorithm patterns

Summary

• We saw a few general approaches to (efficient) algorithm design
• Designing algorithms is not a mechanical procedure: it requires creativity
• There are other common patterns, including

– Backtracking, Branch-and-bound
– Randomized algorithms
– Distributed algorithms (sometime called swarm optimization)
– Transformation

• Designing algorithms is difficult (possibly, not as difficult as analyzing them)

Next:
• Sorting
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 22



Introduction More on recursion Some common algorithm patterns

Summary

• We saw a few general approaches to (efficient) algorithm design
• Designing algorithms is not a mechanical procedure: it requires creativity
• There are other common patterns, including

– Backtracking, Branch-and-bound
– Randomized algorithms
– Distributed algorithms (sometime called swarm optimization)
– Transformation

• Designing algorithms is difficult (possibly, not as difficult as analyzing them)
Next:

• Sorting
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 22



Introduction More on recursion Some common algorithm patterns

Nearest neighbors
an exercise

• Define and implement a divide-and-conquer algorithm for nearest neighbor
problem, which divides the input into two until the solution becomes trivial

• Analyze your algorithm and compare to the naive version sketched above (an
implementation was provided in the previous lecture)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.1



Introduction More on recursion Some common algorithm patterns

Linear search
a little bit of optimization

1 def rl_search(seq, val, i=0):
2 if not seq:
3 return None
4 if val == seq[0]:
5 return i
6 else:
7 return rl_search(seq[1:], val,

i+1)↪→

1 def rl_search2(seq, val, i=0):
2 if i >= len(seq):
3 return None
4 if val == seq[i]:
5 return i
6 else:
7 return rl_search2(seq, val, i

+ 1)↪→

Which one is faster, and why?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.2



Introduction More on recursion Some common algorithm patterns

Better solutions for Fibonacci numbers

1 def fib2(n):
2 if n <= 1:
3 return (n, 0)
4 a, b = fib2(n - 1)
5 return (a+b, a)

1 def fib3(n):
2 if n <= 1:
3 return n
4 a, b = 0, 1
5 for i in range(0, n):
6 a, b = b, a + b
7 return a

Which one is faster/better?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.3



Introduction More on recursion Some common algorithm patterns

Segmentation
with yield

1 def segment_r(seq):
2 if len(seq) == 1:
3 yield [seq]
4 else:
5 for seg in segment_r(seq[1:]):
6 yield [seq[0]] + seg
7 yield [seq[0] + seg[0]] + seg[1:]

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.4



Introduction More on recursion Some common algorithm patterns

Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN:
9781118476734.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.5



Introduction More on recursion Some common algorithm patterns

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.6



Introduction More on recursion Some common algorithm patterns

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.7



Introduction More on recursion Some common algorithm patterns

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.8


	Algorithmic patterns
	Introduction
	Overview

	More on recursion
	Recursion
	Recursion
	Recursion
	Recursion
	Recursion
	Recursion
	How does this recursion work
	How does this recursion work
	How does this recursion work
	How does this recursion work
	How does this recursion work
	How does this recursion work
	How does this recursion work
	How does this recursion work
	Recursion: practical issues
	Another recursive example
	Another recursive example
	Visualizing binary recursion
	Complexity of (naive) Fibonacci algorithm

	Some common algorithm patterns
	Brute force
	Brute force
	Brute force
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Segmentation
	Enumerating segmentations
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Divide and conquer
	Greedy algorithms
	Greedy algorithms
	Greedy algorithms
	Greedy algorithms
	Greedy algorithms
	Dynamic programming
	Dynamic programming
	Complexity of Fibonacci algorithm with dynamic pogramming

	
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Summary
	Nearest neighbors
	Linear search
	Better solutions for Fibonacci numbers
	Segmentation
	Acknowledgments, credits, references



