Overview
Algorithmic patterns

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

+ Some common approaches to algorithm design

Gagn Goltekin - Revisting recursi
ceoltekindsfs. uni-tuebingen.de ~ Brute force
- Divide and conquer
~ Greedy algorithms
Gniversty o Tl
Serina o Sprachvsrmchtt ~ Dynamic programming

Winter Semester 2023/24

Recursion How does this recursion work
linearsearch again recursion trace/graph
writinga search.
+ Recursion is y i

« And we need a b: et §
roturn r1_search(seqli:], val, i+1)

T 1 search((2],2,8)

Recursion: practical issues Another recursive example
securson depthand il ecursion every lgorithm course s requine 1o introduce Flbonsctmumbers
Fibonaccl numbers are defined as:
« Each function call requires some bookkeeping 0
. C » _
function call . .) revumm 0
+ Most environments limit the number of recursive calls: long chains of Sl (3 ©2 return 1)+ i
recursion are likely to cause errors
« Tail recursion (e g, our s casy . in math, and + Note that we now have binary
« Itis also easy to optimize, and optimized by many compilers (ot by the ‘maps well to the recursive recursion, each function call creates.
Python interpreter) algorithms two call fo self
+ We follow the math exactly, butis
this code efficient?

Visualizing binary recursion Complexity of (naive) Fibonacei algorithm

recusion tree for 115(7)

° A

Brute force Brute force

example inding allpossible ways to segment astring,

+ Segmentation is prevalentin CL.

« In some cases, we may need to enumerate al possible cases (e.g, to find the - words:
best solution) that do not use white space)

+ Common in combinatorial problems -

compound splits

« Often intractable, practical only for small input sizes -

5 + We consider the following problem:
~ Given a metric o score to determine the "best” segmentation
e K

« How can we enumerate al possible segmentations of a string?

Segmentation

arecursve slution

Segmentation

example/analysis

dof seguent r(seq) [[abed], fabe, d], fab, cd], [ab,c, d],

e - L o, bed], a, be, d), 3, b ed], [a, b, <, d]]
[[bed), bc,d],
[o.<d), b, . d))

T AT len(seq) == 1

‘ return [(seq]]

s for seg in segnent_r(seql1:])

H segs append([s2q[0]] + seg)

; segs append([seq(0] + seg(0]] + seg(1:1)
ogs

([ed]. [c d])
¢ return s =

[c)
{147}

+ Can you think of a non-recursive solution?

Enumerating segmentations

sketchof a non-recursive solution

« 1" means there is a boundary at this position
« Problem is now enumerating all possible binary strings of length n. — 1
(this s binary counting)

Divide and conquer

« The general P it becomes
trivial o solve.
+ Once small parts are solved, the results are combined
+ Goes well with recursion
+ We have already seen a particular flavor: binary search
« The algorithms like binary search and conquer

Divide and conquer

Divide and conquer

Generatdea an example:neaest elghbors (ony heth)
Big problem « Task: find the closest two points =m
divide * Dt ol oq % e
iy 20 = 400 comparisons’ o
« Divide . - o
conquer * Sl sepamtly (conger - .
0510410 x 10 = 200 comparisons . e
« Combne pikheminimamotthe. | L
pa— individual solutions
Divide and conquer Divide and conquer
an cxample: nearest nfghbors(only aseteh)
+ Task:find the closest two points)
+ Directsolution: o0 J o « Thisis probably the most common pattern
20 = 400 comparisons' . + Divide and conquer does not always yield good result, the cost of merging
+ Divide ° 0 . should be less than the gain from the division(s)
* Solveseparey cnauer o . + Many of the important algoriths fal into this category:
10510410 x 10 = 200 comparisons, B ~ merge sortand quicksort (coming soon)
+ Combine: pick T . o - integer muliplication
 matr multpliation

+ Gain is higher when n is larger, and we divide further

- fast Furrier transform (FFT)

Greedy algorithms

« Analgorithm is greedy if it optimizes a local constraint

« In others they may result n “good enough' solutions

« Ifthey work,they are effcient

+ An important class of graph algorithms fallinto this category (., finding
Shortest paths, scheduling)

reedy algorithms
smple xample: ‘change making

+ We want to produce minimum number of coins for a particular sum s
1. Pick the largest coin ¢ <=
2 sets=s—c
5. repeat 1 & 2until s 0
« Is this algorithm correct?
« Think about coins of 10, 30, 40 and apply the algorithm for the sum value of 60
« Is it correct if the coin values were limited Euro coins?

Dynamic programming

tosave

+ Dyna
computation

« Itis sometimes called memoization (it is not a typo)
se fall ud

I ber of algy
common parsing algorithms.

Dynamic programming
cxample Fibonacc

1 det memotivGa, memo = {0 0, 1:19)

. Caeola) © mesofib(a-1) + memofib(a-2)
¢ roturn memoln]

« We save the results calculated in a dictionary,

« if the resultis a) we return

« Otherwise we calculate recursively as before

+ The difference i big, but there is also a ‘neater” solution without (explicit)
‘memoization

Complexity of Fibonacei algorithm with dynamic pogramming
rson fre for £30.(7)

Summary

o WOl .\ppmaghss © [efﬁclsm) algomhm design
« De:
« There are other common patterns, m:ludmg

- Backtracking, Branch-and-bound

~ Randomized algorithms

~ Transformation
+ De: Igorithmes s difficul i
Next:
« Sorting
+ Reading: goodrich2013

Nearest neighbors

Linear search
sl bit ofoptimization

+ Define an

d compare to

problem, which divides the input into two until the solution becomes trivial
implementation was provided in the previous lecture)

above (an

Loewateny v 10

wal, e 11 search2(seq, val, i
Better solutions for Fibonacci numbers Segmentation
i dot tib2(n)’ | e 1 def segment_r(seq)
RS S i lenGeg) = 1
; et 0. 0 Yiela [seq)
DTRED : v L e
: for seg in segasnt_r(aeqli:])
. Jield [ooqlol] + sog
Which one is faster/better? 4 yield [seq[0] + seg[0]] + segli:]
Acknowledgments, credits, references

