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Introduction/motivation Handling collisions Avoiding collisions

Hashing and hash-based data structure
• A hash function is a one-way function that takes a variable-length object, and

turns it into a fixed-length bit string
• Most common applications of hash functions is the map (or associative array, or
dictionary, or symbol table) data structure

• Maps are array-like data structures (O(1) access/update) but can be indexed
using arbitrary objects (e.g., strings)

• Hashing has many other applications
– Database indexing
– Cache management
– Efficient duplicate detection
– File signatures: verification against corrupt/tempered files
– Password storage
– Electronic signatures
– Other cryptographic algorithms/applications
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Maps and sets

• Two common data structures that use hashing is sets and maps (Python dict)
• set abstract data type is based on the sets in mathematics: unordered

collection without duplicates
• map abstract data type is a collection that allows indexing with almost any

data type (Python dicts require immutable data types)
• Basic operations include

Sets:
• Check whether an object is in the set

(x in s)
• Add an element to a set (s.add(x))
• Remove an element from a set

(s.remove(x))

Maps:
• Retrieve the value of a key (d[key])
• Associate a key with a value

(d[key] = val)
• Remove a key–value pair

(del d[key])
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Implementing sets and maps

Check/retrieve Add Remove
Sorted array: O(logn) O(n) O(n)
Unsorted array: O(n) O(1) O(n)
Skip list: O(logn) O(logn) O(logn)
Balanced search trees: O(logn) O(logn) O(logn)
Hash tables: O(1) O(1) O(1)
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A trivial array implementation
store each element i at index i (assuming non-negative integer keys for now)

0
c1

2
a3

4
5
6
7

b8
9

d[3] = 'a'
d[8] = 'b'
d[1] = 'c'

+ All operations are O(1)

- Cannot handle non-integer, negative
keys

- Wastes a lot of memory if key values
are spread across a wide range
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Hash functions

• A hash function h() maps a key to an integer index between 0 and m (size of
the array)

• We use h(k) as an index to an array (of size m)
• If we map two different key values to the same integer, a collision occurs
• The main challenge with implementing hash maps is to avoid and handle the

collisions
• We can think of a hash function in two parts:

– map any object (variable bit string) to an integer (e.g., 32 or 64 bit)
– compress the range of integers to map size (m)
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Compressing the hash codes

d0
c1

2
a3

4
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6

e7
b8

9

h(k) = lamda k: k % 10
d[3] = 'a'
d[8] = 'b'
d[1] = 'c'
d[10] = 'd'
d[97] = 'e'
d[40] = 'f' – collision

• An easy way to map any integer to
range [0,m] is to use modulo m+ 1

• Good hash functions minimize
collisions, but collisions occur

• Collisions has to be handled by a
map data structure. Two common
approaches:

– Separate chaining
– Open addressing
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Separate chaining
or closed addressing

0
1
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8
97

11

40

15 25

30 40

add(3)
add(8)
add(97)
add(11)
add(10)

add(40)
add(15)
add(25)
add(30)

• Each array element keeps a pointer
to a secondary container (typically a
list)

• When a collision occurs, add the
item to the list,

• Why not just add to the head of the
list?
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Complexity of separate chaining
is it really O(1)?
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97
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15 25

30 40 • All operations require locating the element
first

• Cost of locating an element include hashing
(constant) + search in secondary data
structure

• This means worst-case complexity is O(n)

• With a good hash function, the probability of
a collisions is n/m: average bucket size is
O(n/m) = O(1) (if m > n)

• Expected complexity for all operations is
O(1)
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Load factor for separate chaining

• Load factor of a hash map is

load factor = number of entries
number of indices

• Low load factor means
– better run time (fewer collisions)
– more memory usage

• When load factor is over a threshold, the map is extended (needs rehash)
• Recommendation vary, but a load factor around 0.75 is considered optimal
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Rehashing

0 1 2 3 4 5 6 7 8 9

10 3 89711 15

2530

40

Before: lf=9/10

0 1 2 3 4 5 6 7 8 9 10 11 12

103 897 1115 253040

After: lf=9/13
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Open addressing (linear probing)
adding/accessing items

0 1 2 3 4 5 6 7 8 9
3 897110 40

h(40)

22

h(22)

• During insertion, if there is a collision, look for the next
empty slot, and insert

• During lookup, probe until there is an empty slot

add(3)
add(8)
add(97)
add(11)
add(10)

add(40)
add(22)
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Open addressing (linear probing)
deleting items

0 1 2 3 4 5 6 7 8 9
3 897110 40 22

h(40) h(22)

X

• We can locate an element as usual, and delete it

• However, this breaks probing: now h(22) will point to an
empty slot

• Rearranging the remaining items is complex & costly
• We insert a special value,

– During lookup, treat it as full
– During insertion, treat it as empty

remove(40)

contains(22)
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Quadratic probing

• Linear probing tends to create clusters of items, especially if load factor is
high (> 0.5)

• Quadratic probing provides some improvements
• Probe (h(k) + i2) mod m for i = 0, 1, . . . until an empty slot is found
• If m is prime, and load factor is less than 0.5, quadratic probing is guaranteed

to find an empty slot
• Although better than linear probing, quadratic probing creates its own kind

of clustering

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 13 / 23

Introduction/motivation Handling collisions Avoiding collisions

Double hashing

• Similar to quadratic probing, probe non-linearly
• Instead of probing the next item, probe (h(k) + i× h ′(k)) mod m for
i = 0, 1, . . . where h ′(k) another hash function

• A common choice is h ′(k) = q− (k mod q) for a prime number q < m
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Using a pseudo random number generator

• This method probes (h(k) + i× ri) mod m for i = 0, 1, . . . where ri is the ith
number generated by a pseudo random number generator

• Pseudo random number generators generate numbers that are close to
uniform. However given the same seed, the sequence is deterministic

• This approach is the most common choice for modern programming
languages/environments

• This also avoids problems with inputs that intentionally generate hash
collisions
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Aside: hash DoS attacks

• A denial-of-service (DoS) attack aims to break or slow down an Internet
site/service

• A particular attack (in 2003, but also 2011) made use of hash table
implementation of popular programming languages

• Input to a web-based program is passed as key–value pairs, which are
typically stored in a dictionary

• If one intentionally posts an input with a large number of colliding keys,
– the hash table implementation needs to chain long sequences (separate

chaining) or probe a large number of times (open addressing)
– and eventually re-hash

• This increases expected to O(1) time to worst-case complexity

https://en.wikipedia.org/wiki/Collision_attack
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Hash functions
and their properties

• A hash function must be consistent: if a == b, h(a) == h(b)
• A hash function should minimize collisions: values for h should be uniformly

distributed
• A hash function should be fast to compute (…or maybe not – if you are using

it for passwords)
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Hash codes

• Earlier we suggested dividing the hash function into two
– A hash code that maps a variable-size object to an integer
– A compression method that squeezes the integer value to hash table size

• A hash code avoids collisions: colliding hash codes are unavoidably mapped
to the same table address

• A naive approach is to truncate (e.g., take the most or least significant bits), or
pad with an arbitrary pattern (if object is shorter than the hash code)

• This approach creates many collisions in real-world usage
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Hash codes
xor or add

• A simple approach is based on
– Bitwise add each k-bit segment of the memory representation of the object,

ignoring the overflow: h(x) =
∑

i xi
– Similarly, one can use XOR instead of addition

• These methods meet the hash code requirement:
if a == b, then h(a) == h(b)

• However, in practice, they create many collisions because of their associativity
– abc, bca and cba all get the same hash code
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Polynomial hash codes

• Polynomial hash codes are calculated using

h(x) =

n∑
i

xia
n−i−1 = x0a

n−1 + x1a
n−2 + . . .+ xn−1

• The important aspect is that now the function will produce different values
with sequences with the same items in a different order

• The exact form is motivated by quick computation if rewritten as

xn−1 + a(xn−2 + a(xn−3 + . . .))
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Cyclic-shift hash codes

• Instead of multiplying with
powers of a constant,
cyclic-shift hashing shifts
some bits from one end to
the other at each step in
running sum

• Since bitwise operations are
simple, this is a fast way of
obtaining a non-associative
valid hash code

1010011001110100
1100111010010100

def cyclic_shift(s):
mask = 0xffff
h = 0
for ch in s:

h = (h << 5 & mask) | (h >> 11)
h ^= ord(ch)

return h
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A short divergence: cryptographic hash functions
• Hash functions has an important role in cryptography
• In cryptography, it is important to have hash functions for which it is difficult

to find two keys with the same hash value
• There are a wide range of well-known hash functions (which are also

available in most programming environments)
– MD5
– SHA-1
– RIPEMD-160
– Whirlpool
– SHA-2
– SHA-3
– BLAKE2
– BLAKE3

• These functions are designed for applications like digital fingerprinting,
password storage

• Computationally inefficient for use in data structures
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Summary

• Hash functions are useful for implementing map ADT efficiently
• Hash functions have a wide range of other applications
• The main issue in implementing a hash function is avoiding collisions, and

handling them efficiently when they occur
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 10)

Next:
• Algorithms on strings: pattern matching, edit distance, tries
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),Jurafsky

and Martin (2009, section 3.11, or 2.5 in online draft)
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