
Maps and hash tables
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2024/25

version: 7791939 @2024-12-02

Introduction/motivation Handling collisions Avoiding collisions

Hashing and hash-based data structure
• A hash function is a one-way function that takes a variable-length object, and

turns it into a fixed-length bit string
• Most common applications of hash functions is the map (or associative array, or
dictionary, or symbol table) data structure

• Maps are array-like data structures (O(1) access/update) but can be indexed
using arbitrary objects (e.g., strings)

• Hashing has many other applications
– Database indexing
– Cache management
– Efficient duplicate detection
– File signatures: verification against corrupt/tempered files
– Password storage
– Electronic signatures
– Other cryptographic algorithms/applications

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 1 / 23

Introduction/motivation Handling collisions Avoiding collisions

Maps and sets

• Two common data structures that use hashing is sets and maps (Python dict)
• set abstract data type is based on the sets in mathematics: unordered

collection without duplicates
• map abstract data type is a collection that allows indexing with almost any

data type (Python dicts require immutable data types)
• Basic operations include

Sets:
• Check whether an object is in the set

(x in s)
• Add an element to a set (s.add(x))
• Remove an element from a set

(s.remove(x))

Maps:
• Retrieve the value of a key (d[key])
• Associate a key with a value

(d[key] = val)
• Remove a key–value pair

(del d[key])

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 23

Introduction/motivation Handling collisions Avoiding collisions

Implementing sets and maps

Check/retrieve Add Remove
Sorted array: O(logn) O(n) O(n)
Unsorted array: O(n) O(1) O(n)
Skip list: O(logn) O(logn) O(logn)
Balanced search trees: O(logn) O(logn) O(logn)
Hash tables: O(1) O(1) O(1)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 23

Introduction/motivation Handling collisions Avoiding collisions

A trivial array implementation
store each element i at index i (assuming non-negative integer keys for now)

0
c1

2
a3

4
5
6
7

b8
9

d[3] = 'a'
d[8] = 'b'
d[1] = 'c'

+ All operations are O(1)

- Cannot handle non-integer, negative
keys

- Wastes a lot of memory if key values
are spread across a wide range

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 23

Introduction/motivation Handling collisions Avoiding collisions

Hash functions

• A hash function h() maps a key to an integer index between 0 and m (size of
the array)

• We use h(k) as an index to an array (of size m)
• If we map two different key values to the same integer, a collision occurs
• The main challenge with implementing hash maps is to avoid and handle the

collisions
• We can think of a hash function in two parts:

– map any object (variable bit string) to an integer (e.g., 32 or 64 bit)
– compress the range of integers to map size (m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 23

Introduction/motivation Handling collisions Avoiding collisions

Compressing the hash codes

d0
c1

2
a3

4
5
6

e7
b8

9

h(k) = lamda k: k % 10
d[3] = 'a'
d[8] = 'b'
d[1] = 'c'
d[10] = 'd'
d[97] = 'e'
d[40] = 'f' – collision

• An easy way to map any integer to
range [0,m] is to use modulo m+ 1

• Good hash functions minimize
collisions, but collisions occur

• Collisions has to be handled by a
map data structure. Two common
approaches:

– Separate chaining
– Open addressing

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 23

Introduction/motivation Handling collisions Avoiding collisions

Separate chaining
or closed addressing

0
1
2
3
4
5
6
7
8
9

10

3

8
97

11

40

15 25

30 40

add(3)
add(8)
add(97)
add(11)
add(10)

add(40)
add(15)
add(25)
add(30)

• Each array element keeps a pointer
to a secondary container (typically a
list)

• When a collision occurs, add the
item to the list,

• Why not just add to the head of the
list?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 23

Introduction/motivation Handling collisions Avoiding collisions

Separate chaining
or closed addressing

0
1
2
3
4
5
6
7
8
9

10

3

8
97

11
40

15 25

30 40

add(3)
add(8)
add(97)
add(11)
add(10)
add(40)

add(15)
add(25)
add(30)

• Each array element keeps a pointer
to a secondary container (typically a
list)

• When a collision occurs, add the
item to the list,

• Why not just add to the head of the
list?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 23

Introduction/motivation Handling collisions Avoiding collisions

Separate chaining
or closed addressing

0
1
2
3
4
5
6
7
8
9

10

3

8
97

11
40

15

25

30 40

add(3)
add(8)
add(97)
add(11)
add(10)
add(40)
add(15)

add(25)
add(30)

• Each array element keeps a pointer
to a secondary container (typically a
list)

• When a collision occurs, add the
item to the list,

• Why not just add to the head of the
list?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 23

Introduction/motivation Handling collisions Avoiding collisions

Separate chaining
or closed addressing

0
1
2
3
4
5
6
7
8
9

10

3

8
97

11
40

15 25

30 40

add(3)
add(8)
add(97)
add(11)
add(10)
add(40)
add(15)
add(25)

add(30)

• Each array element keeps a pointer
to a secondary container (typically a
list)

• When a collision occurs, add the
item to the list,

• Why not just add to the head of the
list?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 23

Introduction/motivation Handling collisions Avoiding collisions

Separate chaining
or closed addressing

0
1
2
3
4
5
6
7
8
9

10

3

8
97

11

40

15 25

30 40
add(3)
add(8)
add(97)
add(11)
add(10)
add(40)
add(15)
add(25)
add(30)

• Each array element keeps a pointer
to a secondary container (typically a
list)

• When a collision occurs, add the
item to the list,

• Why not just add to the head of the
list?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 23



Introduction/motivation Handling collisions Avoiding collisions

Complexity of separate chaining
is it really O(1)?

0
1
2
3
4
5
6
7
8
9

10

3

8
97

11

15 25

30 40 • All operations require locating the element
first

• Cost of locating an element include hashing
(constant) + search in secondary data
structure

• This means worst-case complexity is O(n)

• With a good hash function, the probability of
a collisions is n/m: average bucket size is
O(n/m) = O(1) (if m > n)

• Expected complexity for all operations is
O(1)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 23

Introduction/motivation Handling collisions Avoiding collisions

Load factor for separate chaining

• Load factor of a hash map is

load factor = number of entries
number of indices

• Low load factor means
– better run time (fewer collisions)
– more memory usage

• When load factor is over a threshold, the map is extended (needs rehash)
• Recommendation vary, but a load factor around 0.75 is considered optimal

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 23

Introduction/motivation Handling collisions Avoiding collisions

Rehashing

0 1 2 3 4 5 6 7 8 9

10 3 89711 15

2530

40

Before: lf=9/10

0 1 2 3 4 5 6 7 8 9 10 11 12

103 897 1115 253040

After: lf=9/13

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 23

Introduction/motivation Handling collisions Avoiding collisions

Open addressing (linear probing)
adding/accessing items

0 1 2 3 4 5 6 7 8 9
3 897110 40

h(40)

22

h(22)

• During insertion, if there is a collision, look for the next
empty slot, and insert

• During lookup, probe until there is an empty slot

add(3)
add(8)
add(97)
add(11)
add(10)

add(40)
add(22)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 23

Introduction/motivation Handling collisions Avoiding collisions

Open addressing (linear probing)
adding/accessing items

0 1 2 3 4 5 6 7 8 9
3 897110 40

h(40)

22

h(22)

• During insertion, if there is a collision, look for the next
empty slot, and insert

• During lookup, probe until there is an empty slot

add(3)
add(8)
add(97)
add(11)
add(10)
add(40)

add(22)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 23

Introduction/motivation Handling collisions Avoiding collisions

Open addressing (linear probing)
adding/accessing items

0 1 2 3 4 5 6 7 8 9
3 897110 40

h(40)

22

h(22)

• During insertion, if there is a collision, look for the next
empty slot, and insert

• During lookup, probe until there is an empty slot

add(3)
add(8)
add(97)
add(11)
add(10)
add(40)
add(22)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 23

Introduction/motivation Handling collisions Avoiding collisions

Open addressing (linear probing)
deleting items

0 1 2 3 4 5 6 7 8 9
3 897110 40 22

h(40) h(22)

X

• We can locate an element as usual, and delete it

• However, this breaks probing: now h(22) will point to an
empty slot

• Rearranging the remaining items is complex & costly
• We insert a special value,

– During lookup, treat it as full
– During insertion, treat it as empty

remove(40)

contains(22)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 23

Introduction/motivation Handling collisions Avoiding collisions

Open addressing (linear probing)
deleting items

0 1 2 3 4 5 6 7 8 9
3 897110 40 22

h(40) h(22)

X

• We can locate an element as usual, and delete it

• However, this breaks probing: now h(22) will point to an
empty slot

• Rearranging the remaining items is complex & costly
• We insert a special value,

– During lookup, treat it as full
– During insertion, treat it as empty

remove(40)

contains(22)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 23

Introduction/motivation Handling collisions Avoiding collisions

Open addressing (linear probing)
deleting items

0 1 2 3 4 5 6 7 8 9
3 897110 40 22

h(40) h(22)

X

• We can locate an element as usual, and delete it
• However, this breaks probing: now h(22) will point to an

empty slot
• Rearranging the remaining items is complex & costly

• We insert a special value,

– During lookup, treat it as full
– During insertion, treat it as empty

remove(40)
contains(22)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 23

Introduction/motivation Handling collisions Avoiding collisions

Open addressing (linear probing)
deleting items

0 1 2 3 4 5 6 7 8 9
3 897110 40 22

h(40) h(22)

X

• We can locate an element as usual, and delete it
• However, this breaks probing: now h(22) will point to an

empty slot
• Rearranging the remaining items is complex & costly
• We insert a special value,

– During lookup, treat it as full
– During insertion, treat it as empty

remove(40)
contains(22)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 23

Introduction/motivation Handling collisions Avoiding collisions

Quadratic probing

• Linear probing tends to create clusters of items, especially if load factor is
high (> 0.5)

• Quadratic probing provides some improvements
• Probe (h(k) + i2) mod m for i = 0, 1, . . . until an empty slot is found
• If m is prime, and load factor is less than 0.5, quadratic probing is guaranteed

to find an empty slot
• Although better than linear probing, quadratic probing creates its own kind

of clustering

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 13 / 23

Introduction/motivation Handling collisions Avoiding collisions

Double hashing

• Similar to quadratic probing, probe non-linearly
• Instead of probing the next item, probe (h(k) + i× h ′(k)) mod m for
i = 0, 1, . . . where h ′(k) another hash function

• A common choice is h ′(k) = q− (k mod q) for a prime number q < m

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 14 / 23



Introduction/motivation Handling collisions Avoiding collisions

Using a pseudo random number generator

• This method probes (h(k) + i× ri) mod m for i = 0, 1, . . . where ri is the ith
number generated by a pseudo random number generator

• Pseudo random number generators generate numbers that are close to
uniform. However given the same seed, the sequence is deterministic

• This approach is the most common choice for modern programming
languages/environments

• This also avoids problems with inputs that intentionally generate hash
collisions

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 23

Introduction/motivation Handling collisions Avoiding collisions

Aside: hash DoS attacks

• A denial-of-service (DoS) attack aims to break or slow down an Internet
site/service

• A particular attack (in 2003, but also 2011) made use of hash table
implementation of popular programming languages

• Input to a web-based program is passed as key–value pairs, which are
typically stored in a dictionary

• If one intentionally posts an input with a large number of colliding keys,
– the hash table implementation needs to chain long sequences (separate

chaining) or probe a large number of times (open addressing)
– and eventually re-hash

• This increases expected to O(1) time to worst-case complexity

https://en.wikipedia.org/wiki/Collision_attack

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 23

Introduction/motivation Handling collisions Avoiding collisions

Hash functions
and their properties

• A hash function must be consistent: if a == b, h(a) == h(b)
• A hash function should minimize collisions: values for h should be uniformly

distributed
• A hash function should be fast to compute (…or maybe not – if you are using

it for passwords)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 23

Introduction/motivation Handling collisions Avoiding collisions

Hash codes

• Earlier we suggested dividing the hash function into two
– A hash code that maps a variable-size object to an integer
– A compression method that squeezes the integer value to hash table size

• A hash code avoids collisions: colliding hash codes are unavoidably mapped
to the same table address

• A naive approach is to truncate (e.g., take the most or least significant bits), or
pad with an arbitrary pattern (if object is shorter than the hash code)

• This approach creates many collisions in real-world usage

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 18 / 23

Introduction/motivation Handling collisions Avoiding collisions

Hash codes
xor or add

• A simple approach is based on
– Bitwise add each k-bit segment of the memory representation of the object,

ignoring the overflow: h(x) =
∑

i xi
– Similarly, one can use XOR instead of addition

• These methods meet the hash code requirement:
if a == b, then h(a) == h(b)

• However, in practice, they create many collisions because of their associativity
– abc, bca and cba all get the same hash code

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 19 / 23

Introduction/motivation Handling collisions Avoiding collisions

Polynomial hash codes

• Polynomial hash codes are calculated using

h(x) =

n∑
i

xia
n−i−1 = x0a

n−1 + x1a
n−2 + . . .+ xn−1

• The important aspect is that now the function will produce different values
with sequences with the same items in a different order

• The exact form is motivated by quick computation if rewritten as

xn−1 + a(xn−2 + a(xn−3 + . . .))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 23

Introduction/motivation Handling collisions Avoiding collisions

Cyclic-shift hash codes

• Instead of multiplying with
powers of a constant,
cyclic-shift hashing shifts
some bits from one end to
the other at each step in
running sum

• Since bitwise operations are
simple, this is a fast way of
obtaining a non-associative
valid hash code

1010011001110100
1100111010010100

def cyclic_shift(s):
mask = 0xffff
h = 0
for ch in s:

h = (h << 5 & mask) | (h >> 11)
h ^= ord(ch)

return h

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 21 / 23

Introduction/motivation Handling collisions Avoiding collisions

A short divergence: cryptographic hash functions
• Hash functions has an important role in cryptography
• In cryptography, it is important to have hash functions for which it is difficult

to find two keys with the same hash value
• There are a wide range of well-known hash functions (which are also

available in most programming environments)
– MD5
– SHA-1
– RIPEMD-160
– Whirlpool
– SHA-2
– SHA-3
– BLAKE2
– BLAKE3

• These functions are designed for applications like digital fingerprinting,
password storage

• Computationally inefficient for use in data structures
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 23

Introduction/motivation Handling collisions Avoiding collisions

Summary

• Hash functions are useful for implementing map ADT efficiently
• Hash functions have a wide range of other applications
• The main issue in implementing a hash function is avoiding collisions, and

handling them efficiently when they occur
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 10)

Next:
• Algorithms on strings: pattern matching, edit distance, tries
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),Jurafsky

and Martin (2009, section 3.11, or 2.5 in online draft)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 23 / 23

Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN:
9781118476734.
Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. second edition. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.1

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.2

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.3

https://en.wikipedia.org/wiki/Collision_attack


blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.4

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.5


	Maps and hash tables
	Hashing and hash-based data structure
	Introduction/motivation
	Maps and sets
	Implementing sets and maps
	A trivial array implementation
	Hash functions
	Compressing the hash codes

	Handling collisions
	Separate chaining
	Separate chaining
	Separate chaining
	Separate chaining
	Separate chaining
	Complexity of separate chaining
	Load factor for separate chaining
	Rehashing
	Open addressing (linear probing)
	Open addressing (linear probing)
	Open addressing (linear probing)
	Open addressing (linear probing)
	Open addressing (linear probing)
	Open addressing (linear probing)
	Open addressing (linear probing)
	Quadratic probing
	Double hashing
	Using a pseudo random number generator
	Aside: hash DoS attacks

	Avoiding collisions
	Hash functions
	Hash codes
	Hash codes
	Polynomial hash codes
	Cyclic-shift hash codes
	A short divergence: cryptographic hash functions

	
	Summary


	Appendix
	Acknowledgments, credits, references


