Maps and hash tables

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Gagn Caltekin

ceoltekindats. uni-tuebingen. de

ey e
S e Sprachwisnmachtt

Winter Semester 2024/25

Hashing and hash-based data structure

A fnction o s cne-vy frcton that takes o acae dength et 0d
turns it into a fixed-length

« Most hash f the map (or ass o
dictionary, or synibol table) data structure

+ Maps are array-like data structures (O(1) access/update) but can be indexed
using arbitrary objects (e.g strings)

« Hashing has many other applications

- Database indexing

che management
Efficient duplicate detection

~ Filesignatures: verifcation against corrupt;tempered files

- Prswordsonage

- Electronic signatus

 Other ryptographic algorthms/applications

Maps and sets

o d maps (Python dict)
« set abstract data type is based on the sets in mathematics: unordered
collection without duplicates
« map abstract data type is a collection that allows indexing with almost any
data type (Python dicts require immutable data types)
« Basic operations include
s

Maps:

+ Check whetheran objectisinthe set » Retrievethe value ofa key (alkey])
(xin) + Associatea key with a value

+ Add an element to a set (s.add (x)) (dlkey] = val)

+ Remove an element from aset + Remmove a key-value pair

(s.xemove(x)) (de1 alkey])

Implementing sets and maps

Checkretrieve Add___ Remove
Sorted array: Oflogn) ol
Unsoried amay o) ofn)

Oflogn) Ologn)

[Ologn) Oflogn)
Hash tables: oq) o om

A trivial array implementation

Store ach elment |t Index | (3ssuming non-negative Inteer keys or now)

+ All operations are O(1)
- Cannot handle non-integer, negative

- Wastes a lot of memory if key values
are spread across a wide range

functions

« A hash function () maps a key to an integer index between 0 and m (size of
the array)
+ We use h(k) as an index to an array (of size m)
« Ifwemap two. to
+ The main challenge with implementing hash maps i o avoid and hanle the
collisions
+ We can think of a hash function in two parts
- map any cjct (vl sin) 0 an e (5. 20 64)
compress the range of integers to map size (

Compressing the hash codes

« An easy way to map any integer to
range (0,m!is o use modulo m + 1
ood hash functions minimize
v collsions, but collisions occur
Collisions has to be handled by a.
fructure. Two common
approaches
= Separate chaining
Open addressing

landa k: k % 10

£~ collision

Separate chaining

or cloed addressing

0 10

1 n

2 « Each array clement keeps a pointer
3 3 0. secondary container (typically a
a list)

5 ada(10) + When a collsion occurs, add the

6 item to the lst,

7 o7

5 s

9

Separate chaining

or closed addressng

o[T10-40

1 i

2 + Each array clement keeps a pointer
H— o secondary container (typicaly a
A)

5 + When a colision occurs, add the

. aaa(a0) item tothe st

=4

=N

9

Separate

or closed add

+ Each array element keeps a pointer
to. secondary container (typically a
list)

+ Whena collision oceurs, add the
item to the list,

Separate chaining

or closed adressing

0 10+ 40

1 1

A « Each array clement keeps a pointer
3 3 0. secondary container (typically a
a list)

5 1525 « When a collision occurs, add the

. tem o the lst,

7 97

8 8

9

Separate chaining

or closed addressing

0 1030+ 40

1 1

2 + Each array clement keeps a pointer
3 3 to. secondary container (typically a
i list)

5 1525 + When a collsion oceurs, add the

6 item to the list,

7 o7 + Why notjustadd to the head of the
5 s list?

9

Complexity of separate chaining

0 oD « All operations require locating the element

o b first

2 + Cost of locating an element include hashing

8 3 (constant) + search in secondary data

A structure

5 1525 « This means worst-<case complesity is O(n)

6 « Witha good hash function, the probability of

7 o a collsions s n/m: average bucket size is

M 8 Ofn/m) = 0(1) (ifm > n)

9 « Expected complexity for all operations is
o(1)

Load factor for separate chaining

+ Load factor of a hash map is

number of entries

load factor

+ Low load factor means
~ better run time (fewer collisions)
- more memory usage

Dumber of indices.

+ When load factor is over a threshold, the map is extended (needs rehash)
+ Recommendation vary, but a load factor around 0.75 is considered optimal

adding

After:

Open addressing (linear probing)

2 5 6

9

F ’
[T T [To]

0o 1
[T

3
s]

empty slot, and insert
During lookup, probe until there is an empty slot

« During insertion, i there s a collision, look for the next

add(3)
ada(8)
ada(97)
ada11)
add(10)

Open addre

addin

ing (linear probing)

Open addressing (linear probing)

adingjaccesing s

0 12 3 45 6 7 8 9 (oo 0 12 3 45 6 7 8 5 (o
ada ada
ol TefsT T 1 [o0sT] e I I N N2 I O 2 O G
aaacon) adga(s)
a0a11) / aaa(11)
h{40) add(10) hi22) 2dd(10)
+ During insertion, if there is a colsion, ook for the next 2daca0) + During insertion, if there is a collsion, look for the next add(40)
emply slot, and insert empty slot, and insert 244(22)
+ During lookup, probe untl there is an empty slot « During lookup, probe unti there is an empty slot
Open addressing (linear probing) Open addressing (linear probing)
deeing ems deeting s
0 1 2 3 4 5 6 7 8 9 [0 1 2 3 s 5 & 7 8 9 1
o ez | el] | = T > T remove(40) ‘
h(d0)
+ We can locate an element as usual, and delete it + We can locate an element as usual, and delete it
Open addressing (linear probing) Open addressing (linear probing)
deleing ems deeting s
0 12 3 45 6 78 0 0 1 2 3 4 5 & 7 8 9 -
renova (40 renove 40
IECH N 2 I 72 O IECH 0 72 N
2) n22)
+ We can locate an element as usual, and delete it + We canlocate an element as usual, and delete it
+ However,this breaks probing: now h(22) will point to an « However, this breaks probing: now h(22) will point o an
empty slo empty slo
+ Rearranging the remaining items is complex & costly + Rearranging the remaining tems is complex & costly
+ We inserta special value,
During lookup, treat s fll
 During nsetion, reat a5 ernpty
Quadratic probing Double hashing
+ Linear p e factor s
high (>05) ; " . N
+ Quadratic probing provides some improvements © ST O S G TR
i s Z xt item, probe (h[k) + i x h'(k]) mod m for

« Probe ((k] +i?) mod m for until an empty slot is found

« I mis prime, and load factor is less than 0.5, quadratic probing is guaranteed.
to find an empty slot

« Although better than linear probing, quadratic probing creates its awn kind
of clustering,

+ Instead of probing the ne>
=0,1,.... where (k) another hash function

+ A common choice is h'(K) = g — (k mod q) for a prime number g < m

Using a pseudo random number generator Aside: hash DoS attacks
+ A denialof-sevice (DoS)attack aims o break or slow doven an Internet
. site/service
+ This method probes (h(k) +i x 1) mod mfori=0,1,... where r_is the i'" + A particular attack (in 2003, but also 2011) made use of hash table

number generated by a pseudo random number generator implementation of popular programming languages

+ Input to a web-based program is passed as key-value pairs, which are
typically stored in a dictionary

. he lose to
uniform. However given the same seed, the sequence is deterministic

« This approach is the most common choice for modern programming . T
languages environments. he hash table implementation needs o chain lon sequences (separate
+ This also avoids problems with inputs that ntentionaly generate hash d\ui\\mg] orprobe a args umber of tns (open addressing)
collsions - and eventually
o t00(1) plexity

hetps://on. vikipodia.org/siki/Collision_attack

Hash functions Hash codes

+ Earlier we suggested dividing the hash function into two.
sh code that maps a variablesize object o an integer

+ A hash function st be consisten: if a. == b, (a) == 1(b) = value
+ Ahash function should minimize collisions: values for h should be uniformly oA pped
distrbuted to the same table address
+ A hash function should be fast o compute (.or maybe not - ifyou are using . is to truncate (e.g,
it for passwords) pad with an arbitrary pattern (i object s shorter than the hash code)

« This approach creates many collisions in real-world usage

Hash codes Polynomial hash codes
S

« Polynomial hash codes are calculated using

3 h = 3 xiant

*+ Asimplespprosch s based on

=" 210" 2

inormg he overow: HT v,
- Similary, one can use XOR insiead of additon

« These methods et the hash code requirement
ifa o)

. function will p =
with sequences with the same items in a different order
« The exact form is motivated by quick computation if rewritten as

- H
= abc,bca and cba all gt the same hash code e)
Cyclic-shift hash codes A short divergence: cryptographic hash functions
* Hashfunconshasan mportant ol n cyprogaphy
which it is difficult
 Instead of multiplying with 1010011001110100 " {0 i fwo Keys with the same hash value
powers of a constant, 1100111010010100 + There are a wide range of well-known hash functions (which are also

cyelic-shift hashing shifts vaizbe inmos programming environments)

e det cyclic_shizs):

St

the other at each step in St
running sum i - Whirlpool
« Since bitwise operations are <<'5 & masi) | (& >> 1) - sHAZ
simple, this s a fast way of B = orate) - SHAS
obtaining a non-associative. - BLAKE2
~ BLAKE3

valid hash code

for. like digital
 pasewond storage
o S A e O

Summary Acknowledgments, credits, references

- Hash functions are useful for implementing map ADT effciently
e i e s eyt

« The main issue in hash function a
andling Tea y B Goodrich, Michael T, Roberto Tamassia, and Michal H. Goldwasser (2013).
Hardling them efce "y hen they oceu Data Structures and Algoritims in Python. John Wiley & Sons, Incorporated. s
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 10) o78111847
Next B Jurafsky, Daniel and James H. Martin (2009). Speech and Language Procesing: An
dit distance, Introduction to Natural Language Processing, Compuational Linguistics, and Speech
 Reading Gdrich, Tumassi, and Gedwaser (2015, chapte 13) Jraiky Recognition.second edition. Pearson Prentice Hall. san: 978.0-13-504196-3
and Martin (2009, section 311, or 2 n online draft)

https://en.wikipedia.org/wiki/Collision_attack

	Maps and hash tables
	Hashing and hash-based data structure
	Introduction/motivation
	Maps and sets
	Implementing sets and maps
	A trivial array implementation
	Hash functions
	Compressing the hash codes

	Handling collisions
	Separate chaining
	Separate chaining
	Separate chaining
	Separate chaining
	Separate chaining
	Complexity of separate chaining
	Load factor for separate chaining
	Rehashing
	Open addressing (linear probing)
	Open addressing (linear probing)
	Open addressing (linear probing)
	Open addressing (linear probing)
	Open addressing (linear probing)
	Open addressing (linear probing)
	Open addressing (linear probing)
	Quadratic probing
	Double hashing
	Using a pseudo random number generator
	Aside: hash DoS attacks

	Avoiding collisions
	Hash functions
	Hash codes
	Hash codes
	Polynomial hash codes
	Cyclic-shift hash codes
	A short divergence: cryptographic hash functions

	
	Summary

	Appendix
	Acknowledgments, credits, references

