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Introduction/motivation Formal definition Data structures for graphs

Introduction

• A graph is collection of vertices
(nodes) connected pairwise by
edges (arcs).

• A graph is a useful abstraction with
many applications

• Most problems on graphs are
challenging
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Example applications
City map

• City maps
• Chemical formulas
• Neural networks
• Artificial neural networks
• Electronic circuits
• Computer networks
• Infectious diseases
• Probability distributions
• Word semantics
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Example applications
many more…

• Food web
• Course dependencies
• Social media
• Scheduling
• Games
• Academic networks
• Inheritance relations in object-oriented programming
• Flow charts
• Financial transactions
• World’s languages
• PageRank algorithm
• …
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Definition

• A (simple) graph G is a pair (V,E) where
– V is a set of nodes (or vertices),
– E ⊆ {{x,y} | x,y ∈ V and x ̸= y} is a set of

ordered or unordered pairs, edges
• A graph represent a set of objects (nodes)

and the relations between them (edges)
• Edges in a graph can be either directed, or

undirected
– directed edges (also called arcs) are

2-tuples, or ordered pairs (order is important)
– undirected edges are unordered pairs, or

pair sets (order is not important)
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Types of graphs

• An undirected graph is a graph with only
undirected edges

– Transportation (e.g., railway) networks
• A directed graph (digraph) is a graph with

only directed edges

– course dependencies

• A mixed graph contains both directed and
undirected edges

– a city map
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More graphs types

• A graph is simple if there is only a single edge between two nodes (our earlier
definition)

• If the edges of a graph has associated weights, it is called a weighted graph
• A complete graph contains edges from each node to every other node
• A bipartite graph has two disjoint sets of nodes, where edges are always across

the sets
• A graph is called a multi-graph if there are multiple edges (with the same

direction) between a pair of nodes
• A graph is called a hyper-graph if a single edge can link more than two nodes
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More definitions

• Two nodes joined by an edge are called the
endpoints of the edge

• An edge is called incident to a node if the
node is one of its endpoints. Two nodes are
adjacent (or they are neighbors) if they are
incident to the same edge

• The degree (or valency) of a node is the
number of its incident edges

• In a digraph indegree of a node is the number
of incoming edges, and outdegree of a node is
the number of outgoing edges
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A and B are endpoints of edge 1edge 1 is incident to A and Bdeg(A) = 4
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More definitions

• Two edges are parallel if their both endpoints
are the same

• For a directed graph parallel edges are ones
with the same direction

• A self-loop is an edge from a node to itself
• A path is an sequence of alternating edges

and nodes
• A cycle is a path that starts and ends at the

same node
• A path or a cycle is a simple if every node on

the path is visited only once
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More definitions

• A node X is reachable from another (Y) if
there is a (directed) path from Y to X

• A graph is connected if all nodes are
reachable from each other

• A directed graph is strongly connected if all
nodes are reachable from each other

• A subgraph a graph formed by a subset of
nodes and edges of a graph

• If a graph is not connected, the maximally
connected subgraphs are called the
connected components
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More definitions
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• A spanning subgraph of a graph is a subgraph that includes all nodes of the
graph

• A tree is a connected graph without cycles
• A spanning tree is a spanning subgraph which is a tree
• A forest is a disconnected acyclic graph
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Some properties
sum of degrees

• For an undirected graph with m edges and set of nodes V∑
v∈V

deg(v) = 2m

• All edges are counted twice for each node they are incident to
• The total contribution of each node is twice its degree
• For a directed graph with m edges and set of nodes V∑

v∈V

indeg(v) =
∑
v∈V

outdeg(v) = m
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Some properties
relation between the number of edges and nodes

• For a simple undirected graph with n nodes and m edges

m ⩽ n(n− 1)

2

• If the graph is simple
– there are no parallel edges
– there are no self loops
– the maximum degree of a node is n− 1

• Putting this together with the previous property

2m ⩽ n(n− 1) ⇒ m ⩽ n(n− 1)

2

• For a directed graph with n nodes and m edges

m ⩽ n(n− 1)
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The graph ADT

• A graph is a collection of nodes and edges
• Basic operations include

add_node(v) add a new node
remove_node(v) remove an existing node
adjacent(u,v) return true if the nodes are adjacent (for a digraph true only if

there is a directed link from u to v)
neighbors(v) enumerate the neighbors of the node (for a digraph we list the

nodes reachable through outgoing edges by default)
remove_edge(u,v) remove an existing edge

add_edge(u,v) add a new edge
nodes() enumerate the nodes in the graph
edges() enumerate the edges in the graph
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Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v)

O(1)
remove_edge(v) O(m)
remove_node(v) O(m)
adjacent(u,v) O(m)
neighbors(v) O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v) O(1)
remove_edge(v)

O(m)
remove_node(v) O(m)
adjacent(u,v) O(m)
neighbors(v) O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v) O(1)
remove_edge(v) O(m)
remove_node(v)

O(m)
adjacent(u,v) O(m)
neighbors(v) O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v) O(1)
remove_edge(v) O(m)
remove_node(v) O(m)
adjacent(u,v)

O(m)
neighbors(v) O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v) O(1)
remove_edge(v) O(m)
remove_node(v) O(m)
adjacent(u,v) O(m)
neighbors(v)

O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v) O(1)
remove_edge(v) O(m)
remove_node(v) O(m)
adjacent(u,v) O(m)
neighbors(v) O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency list

A B
e

Cf

Dg h

k

A

D

B

C

B C D

A C D

A B

A B

nodes

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)
edges

• We keep simple lists for nodes and their
neighbors

• Complexity of some operations (assuming
an array-based implemenetatoin):

add_node(v)

O(1)
remove_node(v) O(m)
adjacent(u,v) O(n+min(deg(u),deg(v)))
neighbors(v) O(n+ deg(v))
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• Complexity of some operations (assuming
an array-based implemenetatoin):

add_node(v) O(1)
remove_node(v) O(m)
adjacent(u,v) O(n+min(deg(u),deg(v)))
neighbors(v) O(n+ deg(v))
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Interesting problems on graphs

• Is there a (directed) path between two nodes?
• What is the shortest path between two nodes?
• Is there a cycle in the graph?
• Is there a cycle that uses each edge exactly once? (Eulerian path)
• Is there a cycle that uses each node exactly once? (Hamiltonian path)
• Are all nodes of the graph connected?
• Is there a node that breaks the connectivity if removed?
• Is the graph planar: can it be drawn without crossing edges?
• Are two graphs isomorphic (have the same structure)?
• What is the importance of a web page, based on the links pointing to it?
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Summary

• Graphs are data structures with many applications
• Reading on graphs: Goodrich, Tamassia, and Goldwasser (2013, chapter 14),

Next:
• Graph traversals
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)
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