
Graphs
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2024/25

version: a41f0dd @2024-11-11



Introduction/motivation Formal definition Data structures for graphs

Introduction

• A graph is collection of vertices
(nodes) connected pairwise by
edges (arcs).

• A graph is a useful abstraction with
many applications

• Most problems on graphs are
challenging

A

B

C

D

E

F

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 1 / 19



Introduction/motivation Formal definition Data structures for graphs

Example applications
City map

• City maps
• Chemical formulas
• Neural networks
• Artificial neural networks
• Electronic circuits
• Computer networks
• Infectious diseases
• Probability distributions
• Word semantics

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 19



Introduction/motivation Formal definition Data structures for graphs

Example applications
City map

• City maps
• Chemical formulas
• Neural networks
• Artificial neural networks
• Electronic circuits
• Computer networks
• Infectious diseases
• Probability distributions
• Word semantics

O

OOH H

H

H

HH

H

H

HO
HO

OH

OH

OH

CH2OH
CH2OH

CH2OH

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 19



Introduction/motivation Formal definition Data structures for graphs

Example applications
City map

• City maps
• Chemical formulas
• Neural networks
• Artificial neural networks
• Electronic circuits
• Computer networks
• Infectious diseases
• Probability distributions
• Word semantics

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 19



Introduction/motivation Formal definition Data structures for graphs

Example applications
City map

• City maps
• Chemical formulas
• Neural networks
• Artificial neural networks
• Electronic circuits
• Computer networks
• Infectious diseases
• Probability distributions
• Word semantics

x1 xm
…

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 19



Introduction/motivation Formal definition Data structures for graphs

Example applications
City map

• City maps
• Chemical formulas
• Neural networks
• Artificial neural networks
• Electronic circuits
• Computer networks
• Infectious diseases
• Probability distributions
• Word semantics

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 19



Introduction/motivation Formal definition Data structures for graphs

Example applications
City map

• City maps
• Chemical formulas
• Neural networks
• Artificial neural networks
• Electronic circuits
• Computer networks
• Infectious diseases
• Probability distributions
• Word semantics

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 19



Introduction/motivation Formal definition Data structures for graphs

Example applications
City map

• City maps
• Chemical formulas
• Neural networks
• Artificial neural networks
• Electronic circuits
• Computer networks
• Infectious diseases
• Probability distributions
• Word semantics

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 19



Introduction/motivation Formal definition Data structures for graphs

Example applications
City map

• City maps
• Chemical formulas
• Neural networks
• Artificial neural networks
• Electronic circuits
• Computer networks
• Infectious diseases
• Probability distributions
• Word semantics

α θ Z W

β ϕ

D
N

K

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 19



Introduction/motivation Formal definition Data structures for graphs

Example applications
City map

• City maps
• Chemical formulas
• Neural networks
• Artificial neural networks
• Electronic circuits
• Computer networks
• Infectious diseases
• Probability distributions
• Word semantics

MammalAnimal

Fish Water

Whale

Bear

Vertebra Cat Fur

is a

has

is a

lives in

liv
es
in

is a

is a
isa

has
has

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 19



Introduction/motivation Formal definition Data structures for graphs

Example applications
many more…

• Food web
• Course dependencies
• Social media
• Scheduling
• Games
• Academic networks
• Inheritance relations in object-oriented programming
• Flow charts
• Financial transactions
• World’s languages
• PageRank algorithm
• …

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 19



Introduction/motivation Formal definition Data structures for graphs

Definition

• A (simple) graph G is a pair (V,E) where
– V is a set of nodes (or vertices),
– E ⊆ {{x,y} | x,y ∈ V and x ̸= y} is a set of

ordered or unordered pairs, edges
• A graph represent a set of objects (nodes)

and the relations between them (edges)
• Edges in a graph can be either directed, or

undirected
– directed edges (also called arcs) are

2-tuples, or ordered pairs (order is important)
– undirected edges are unordered pairs, or

pair sets (order is not important)

A

B

C

D

E

F

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 19



Introduction/motivation Formal definition Data structures for graphs

Types of graphs

• An undirected graph is a graph with only
undirected edges

– Transportation (e.g., railway) networks
• A directed graph (digraph) is a graph with

only directed edges

– course dependencies

• A mixed graph contains both directed and
undirected edges

– a city map

A

B

C

D

E

F

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 19



Introduction/motivation Formal definition Data structures for graphs

Types of graphs

• An undirected graph is a graph with only
undirected edges

– Transportation (e.g., railway) networks
• A directed graph (digraph) is a graph with

only directed edges
– course dependencies

• A mixed graph contains both directed and
undirected edges

– a city map

A

B

C

D

E

F

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 19



Introduction/motivation Formal definition Data structures for graphs

Types of graphs

• An undirected graph is a graph with only
undirected edges

– Transportation (e.g., railway) networks
• A directed graph (digraph) is a graph with

only directed edges
– course dependencies

• A mixed graph contains both directed and
undirected edges

– a city map

A

B

C

D

E

F

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 19



Introduction/motivation Formal definition Data structures for graphs

More graphs types

• A graph is simple if there is only a single edge between two nodes (our earlier
definition)

• If the edges of a graph has associated weights, it is called a weighted graph
• A complete graph contains edges from each node to every other node
• A bipartite graph has two disjoint sets of nodes, where edges are always across

the sets
• A graph is called a multi-graph if there are multiple edges (with the same

direction) between a pair of nodes
• A graph is called a hyper-graph if a single edge can link more than two nodes

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• Two nodes joined by an edge are called the
endpoints of the edge

• An edge is called incident to a node if the
node is one of its endpoints. Two nodes are
adjacent (or they are neighbors) if they are
incident to the same edge

• The degree (or valency) of a node is the
number of its incident edges

• In a digraph indegree of a node is the number
of incoming edges, and outdegree of a node is
the number of outgoing edges

A

B

C

D

1

2

3

E

6

6

6

55

4

F7

A and B are endpoints of edge 1edge 1 is incident to A and Bdeg(A) = 4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• Two nodes joined by an edge are called the
endpoints of the edge

• An edge is called incident to a node if the
node is one of its endpoints. Two nodes are
adjacent (or they are neighbors) if they are
incident to the same edge

• The degree (or valency) of a node is the
number of its incident edges

• In a digraph indegree of a node is the number
of incoming edges, and outdegree of a node is
the number of outgoing edges

A

B

C

D

1

2

3

E

6

6

6

55

4

F7

A and B are endpoints of edge 1edge 1 is incident to A and Bdeg(A) = 4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• Two nodes joined by an edge are called the
endpoints of the edge

• An edge is called incident to a node if the
node is one of its endpoints. Two nodes are
adjacent (or they are neighbors) if they are
incident to the same edge

• The degree (or valency) of a node is the
number of its incident edges

• In a digraph indegree of a node is the number
of incoming edges, and outdegree of a node is
the number of outgoing edges

A

B

C

D

1

2

3

E

6

6

6

55

4

F7

A and B are endpoints of edge 1edge 1 is incident to A and Bdeg(A) = 4

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• Two nodes joined by an edge are called the
endpoints of the edge

• An edge is called incident to a node if the
node is one of its endpoints. Two nodes are
adjacent (or they are neighbors) if they are
incident to the same edge

• The degree (or valency) of a node is the
number of its incident edges

• In a digraph indegree of a node is the number
of incoming edges, and outdegree of a node is
the number of outgoing edges

A

B

C

D

1

2

3

E

6

6

6

55

4

F7

indeg(A) = 1, outdeg(A) = 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• Two edges are parallel if their both endpoints
are the same

• For a directed graph parallel edges are ones
with the same direction

• A self-loop is an edge from a node to itself
• A path is an sequence of alternating edges

and nodes
• A cycle is a path that starts and ends at the

same node
• A path or a cycle is a simple if every node on

the path is visited only once

A B C

D

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• Two edges are parallel if their both endpoints
are the same

• For a directed graph parallel edges are ones
with the same direction

• A self-loop is an edge from a node to itself
• A path is an sequence of alternating edges

and nodes
• A cycle is a path that starts and ends at the

same node
• A path or a cycle is a simple if every node on

the path is visited only once

A B C

D

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• Two edges are parallel if their both endpoints
are the same

• For a directed graph parallel edges are ones
with the same direction

• A self-loop is an edge from a node to itself
• A path is an sequence of alternating edges

and nodes
• A cycle is a path that starts and ends at the

same node
• A path or a cycle is a simple if every node on

the path is visited only once

A B C

D

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• Two edges are parallel if their both endpoints
are the same

• For a directed graph parallel edges are ones
with the same direction

• A self-loop is an edge from a node to itself
• A path is an sequence of alternating edges

and nodes
• A cycle is a path that starts and ends at the

same node
• A path or a cycle is a simple if every node on

the path is visited only once

A B C

D

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• Two edges are parallel if their both endpoints
are the same

• For a directed graph parallel edges are ones
with the same direction

• A self-loop is an edge from a node to itself
• A path is an sequence of alternating edges

and nodes
• A cycle is a path that starts and ends at the

same node
• A path or a cycle is a simple if every node on

the path is visited only once

A B C

D

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• Two edges are parallel if their both endpoints
are the same

• For a directed graph parallel edges are ones
with the same direction

• A self-loop is an edge from a node to itself
• A path is an sequence of alternating edges

and nodes
• A cycle is a path that starts and ends at the

same node
• A path or a cycle is a simple if every node on

the path is visited only once

A B C

D

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• A node X is reachable from another (Y) if
there is a (directed) path from Y to X

• A graph is connected if all nodes are
reachable from each other

• A directed graph is strongly connected if all
nodes are reachable from each other

• A subgraph a graph formed by a subset of
nodes and edges of a graph

• If a graph is not connected, the maximally
connected subgraphs are called the
connected components

A

B

C

D

E

F

G

H

J

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• A node X is reachable from another (Y) if
there is a (directed) path from Y to X

• A graph is connected if all nodes are
reachable from each other

• A directed graph is strongly connected if all
nodes are reachable from each other

• A subgraph a graph formed by a subset of
nodes and edges of a graph

• If a graph is not connected, the maximally
connected subgraphs are called the
connected components

A

B

C

D

E

F

G

H

J

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• A node X is reachable from another (Y) if
there is a (directed) path from Y to X

• A graph is connected if all nodes are
reachable from each other

• A directed graph is strongly connected if all
nodes are reachable from each other

• A subgraph a graph formed by a subset of
nodes and edges of a graph

• If a graph is not connected, the maximally
connected subgraphs are called the
connected components

A

B

C

D

E

F

G

H

J

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• A node X is reachable from another (Y) if
there is a (directed) path from Y to X

• A graph is connected if all nodes are
reachable from each other

• A directed graph is strongly connected if all
nodes are reachable from each other

• A subgraph a graph formed by a subset of
nodes and edges of a graph

• If a graph is not connected, the maximally
connected subgraphs are called the
connected components

A

B

C

D

E

F

G

H

J

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

• A node X is reachable from another (Y) if
there is a (directed) path from Y to X

• A graph is connected if all nodes are
reachable from each other

• A directed graph is strongly connected if all
nodes are reachable from each other

• A subgraph a graph formed by a subset of
nodes and edges of a graph

• If a graph is not connected, the maximally
connected subgraphs are called the
connected components

A

B

C

D

E

F

G

H

J

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

• A spanning subgraph of a graph is a subgraph that includes all nodes of the
graph

• A tree is a connected graph without cycles
• A spanning tree is a spanning subgraph which is a tree
• A forest is a disconnected acyclic graph

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 19



Introduction/motivation Formal definition Data structures for graphs

More definitions

A

B

C

D

E

F

A

B

C

D

E

F

A

B

C

D

E

F

• A spanning subgraph of a graph is a subgraph that includes all nodes of the
graph

• A tree is a connected graph without cycles
• A spanning tree is a spanning subgraph which is a tree
• A forest is a disconnected acyclic graph

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 19



Introduction/motivation Formal definition Data structures for graphs

Some properties
sum of degrees

• For an undirected graph with m edges and set of nodes V∑
v∈V

deg(v) = 2m

• All edges are counted twice for each node they are incident to
• The total contribution of each node is twice its degree
• For a directed graph with m edges and set of nodes V∑

v∈V

indeg(v) =
∑
v∈V

outdeg(v) = m

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 19



Introduction/motivation Formal definition Data structures for graphs

Some properties
relation between the number of edges and nodes

• For a simple undirected graph with n nodes and m edges

m ⩽ n(n− 1)

2

• If the graph is simple
– there are no parallel edges
– there are no self loops
– the maximum degree of a node is n− 1

• Putting this together with the previous property

2m ⩽ n(n− 1) ⇒ m ⩽ n(n− 1)

2

• For a directed graph with n nodes and m edges

m ⩽ n(n− 1)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 13 / 19



Introduction/motivation Formal definition Data structures for graphs

The graph ADT

• A graph is a collection of nodes and edges
• Basic operations include

add_node(v) add a new node
remove_node(v) remove an existing node
adjacent(u,v) return true if the nodes are adjacent (for a digraph true only if

there is a directed link from u to v)
neighbors(v) enumerate the neighbors of the node (for a digraph we list the

nodes reachable through outgoing edges by default)
remove_edge(u,v) remove an existing edge

add_edge(u,v) add a new edge
nodes() enumerate the nodes in the graph
edges() enumerate the edges in the graph

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 14 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v)

O(1)
remove_edge(v) O(m)
remove_node(v) O(m)
adjacent(u,v) O(m)
neighbors(v) O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v) O(1)
remove_edge(v)

O(m)
remove_node(v) O(m)
adjacent(u,v) O(m)
neighbors(v) O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v) O(1)
remove_edge(v) O(m)
remove_node(v)

O(m)
adjacent(u,v) O(m)
neighbors(v) O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v) O(1)
remove_edge(v) O(m)
remove_node(v) O(m)
adjacent(u,v)

O(m)
neighbors(v) O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v) O(1)
remove_edge(v) O(m)
remove_node(v) O(m)
adjacent(u,v) O(m)
neighbors(v)

O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Edge list

A B
e

Cf

Dg h

k

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)

• We keep a simple a simple list of
edges (and possibly nodes)

• Simple structure, complexity of
some operations (n nodes, m
edges):

add_edge(v) O(1)
remove_edge(v) O(m)
remove_node(v) O(m)
adjacent(u,v) O(m)
neighbors(v) O(m)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency list

A B
e

Cf

Dg h

k

A

D

B

C

B C D

A C D

A B

A B

nodes

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)
edges

• We keep simple lists for nodes and their
neighbors

• Complexity of some operations (assuming
an array-based implemenetatoin):

add_node(v)

O(1)
remove_node(v) O(m)
adjacent(u,v) O(n+min(deg(u),deg(v)))
neighbors(v) O(n+ deg(v))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency list

A B
e

Cf

Dg h

k

A

D

B

C

B C D

A C D

A B

A B

nodes

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)
edges

• We keep simple lists for nodes and their
neighbors

• Complexity of some operations (assuming
an array-based implemenetatoin):

add_node(v) O(1)
remove_node(v)

O(m)
adjacent(u,v) O(n+min(deg(u),deg(v)))
neighbors(v) O(n+ deg(v))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency list

A B
e

Cf

Dg h

k

A

D

B

C

B C D

A C D

A B

A B

nodes

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)
edges

• We keep simple lists for nodes and their
neighbors

• Complexity of some operations (assuming
an array-based implemenetatoin):

add_node(v) O(1)
remove_node(v) O(m)
adjacent(u,v)

O(n+min(deg(u),deg(v)))
neighbors(v) O(n+ deg(v))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency list

A B
e

Cf

Dg h

k

A

D

B

C

B C D

A C D

A B

A B

nodes

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)
edges

• We keep simple lists for nodes and their
neighbors

• Complexity of some operations (assuming
an array-based implemenetatoin):

add_node(v) O(1)
remove_node(v) O(m)
adjacent(u,v) O(n+min(deg(u),deg(v)))
neighbors(v)

O(n+ deg(v))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency list

A B
e

Cf

Dg h

k

A

D

B

C

B C D

A C D

A B

A B

nodes

e = (A,B)

f = (B,C)

g = (A,D)

h = (D,B)

k = (A,C)
edges

• We keep simple lists for nodes and their
neighbors

• Complexity of some operations (assuming
an array-based implemenetatoin):

add_node(v) O(1)
remove_node(v) O(m)
adjacent(u,v) O(n+min(deg(u),deg(v)))
neighbors(v) O(n+ deg(v))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency matrix

A B
e

Cf

Dg h

k

A B C D

A e k g

B f h

C

D

• We keep a n× n matrix
• Complexity of some operations:

add_node(v)

O(n)
remove_node(v) O(n)
adjacent(u,v) O(1)
neighbors(v) O(n)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency matrix

A B
e

Cf

Dg h

k

A B C D

A e k g

B f h

C

D

• We keep a n× n matrix
• Complexity of some operations:

add_node(v) O(n)
remove_node(v)

O(n)
adjacent(u,v) O(1)
neighbors(v) O(n)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency matrix

A B
e

Cf

Dg h

k

A B C D

A e k g

B f h

C

D

• We keep a n× n matrix
• Complexity of some operations:

add_node(v) O(n)
remove_node(v) O(n)
adjacent(u,v)

O(1)
neighbors(v) O(n)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency matrix

A B
e

Cf

Dg h

k

A B C D

A e k g

B f h

C

D

• We keep a n× n matrix
• Complexity of some operations:

add_node(v) O(n)
remove_node(v) O(n)
adjacent(u,v) O(1)
neighbors(v)

O(n)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 19



Introduction/motivation Formal definition Data structures for graphs

Adjacency matrix

A B
e

Cf

Dg h

k

A B C D

A e k g

B f h

C

D

• We keep a n× n matrix
• Complexity of some operations:

add_node(v) O(n)
remove_node(v) O(n)
adjacent(u,v) O(1)
neighbors(v) O(n)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 19



Introduction/motivation Formal definition Data structures for graphs

Interesting problems on graphs

• Is there a (directed) path between two nodes?
• What is the shortest path between two nodes?
• Is there a cycle in the graph?
• Is there a cycle that uses each edge exactly once? (Eulerian path)
• Is there a cycle that uses each node exactly once? (Hamiltonian path)
• Are all nodes of the graph connected?
• Is there a node that breaks the connectivity if removed?
• Is the graph planar: can it be drawn without crossing edges?
• Are two graphs isomorphic (have the same structure)?
• What is the importance of a web page, based on the links pointing to it?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 18 / 19



Introduction/motivation Formal definition Data structures for graphs

Summary

• Graphs are data structures with many applications
• Reading on graphs: Goodrich, Tamassia, and Goldwasser (2013, chapter 14),

Next:
• Graph traversals
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 19 / 19



Acknowledgments, credits, references

• The map on slide 2 is from OpenStreetMap, The other images are from
Wikipedia, except the infectious disease graph which comes from Thurner et
al. (2020).

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN:
9781118476734.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.1

https://www.openstreetmap.org/
https://www.pnas.org/content/117/37/22684
https://www.pnas.org/content/117/37/22684


blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.2



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.3



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.4



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.5


	Graphs
	Introduction/motivation
	Introduction
	Example applications
	Example applications
	Example applications
	Example applications
	Example applications
	Example applications
	Example applications
	Example applications
	Example applications
	Example applications

	Formal definition
	Definition
	Types of graphs
	Types of graphs
	Types of graphs
	More graphs types
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	More definitions
	Some properties
	Some properties
	The graph ADT

	Data structures for graphs
	Edge list
	Edge list
	Edge list
	Edge list
	Edge list
	Edge list
	Adjacency list
	Adjacency list
	Adjacency list
	Adjacency list
	Adjacency list
	Adjacency matrix
	Adjacency matrix
	Adjacency matrix
	Adjacency matrix
	Adjacency matrix

	
	Interesting problems on graphs
	Summary


	Appendix
	Acknowledgments, credits, references


