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Introduction

« A graph is collection of vertices B
(nodes) connected pairwise by

edges (arcs)

« A graphis a useful abstraction with a——c—
e %
e
challenging D—F

Example applications
Gy map

« City maps

« Chemical formulas.

« Neural networks

+ Artificial neural networks
+ Electronic circuits

+ Computer networks

« Infectious discases

+ Probability distributions
+ Word semantics
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xample applications Example applications
Cuymap
+ Food web
D Vertebra  Cot —— e + Course dependencies
+ Chemical formulas . N + Socal media
+ Neural networks $ : - Scheduling
+ Artfcial neural networks oo Bear - Games
+ Electronic circuits Animal ~== Mammal 7 + Academic networks
e . ¢ et it progaming
 Infectious discases s "
+ Probability distributions < el ot
+ Word semantics Fia L e ¢ Wondslanguages
+ PageRank algorithm




Definition

« A (simple) graph G is a pair (V. ) where
- Visa et ot s (o vrte)
yixy Ay isasetof
et e s e
+ A graph represent a set of objects (nodes)
and the relations between them (edges)
« Edges in a graph can be either directed, or
undirected

Types of graphs

« An undivected graph is a graph with only
diges

~ Transportation (e, railway) networks
*+ Adinced grph (digraph) is graph with

N

« A mixed graph contains both directed and
undirected edges

N

~ directed eges (alo called ares)are A b/
2tuples,oroered pars (order s mportant) =y e
nondered paits, or
pair sets (order is not important)
Types of graphs Types of graphs

« An undirected grapi s a graph with only
undirected
- Transportation (e g, railway) networks
+ Adircted graph (digraph) is a graph with
only directed edge:
= course dependencies
+ A mixed graph contains both directed and
undirected ed
= actymap

+ Anndieed gnph s graph withanly
undirected ed;
" haneporaton (o5, ravay) netwoss
« Adirected graph (digraph) is a graph with
only directed ed;
- course dependencies
+ A mixd grph containsbothdirected and
undirect
e
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More graphs types

A graph is simple if there is only a single edge between two nodes (our earlier

definition)

« I the edges of a graph has associated weights, it is called a weighted graph
s mnw!rl( graph contains edges from each node to every other node

More definitions

endpoints of the edge

+ Anedge is called incident to a node if the
node is one of its endpoints. Two nodes are
adjacent (or they are neighbors) if they are

« Two nodes joined by an edg are called the
¢

B

« A graph is called a multi-grapi i there are multiple edges (with the same.

o i

tite graph has nodes,

incident to the same edge
« The degree (or valency) of a node is the
‘number of its incident edges.

+ In a digraph indegree of a node is the number

“A a

two nodes. of incoming edges, and autdegree of a node s

the number of outgoing edges

D —F

Aand B are endpoints of edge 1

More definitions

+ Two nodes joined by an edge are called the
endpoints of the edg

« Anedge is called incident to a node if the

iode s one ofits endpoints. Tivo nodes are

adjacent (or they are neighbors) if they are.
incident to the same ed

« The degree (or valency) of a node s the
number of its incident edges

More definitions

Two nodes joined by an edge are called the
endpoints of the edge

« An edge s called incident to.a node i the
node is one ofits endpoints. Two nodes are
adjacent (or they are neighbors) f they are
incident to the same ed

i e
number o its incider

+ Ina digraph indegree of a node s the number  edge 115 incident to A and B « Ina digraph indegree e deg(A)
of incoming edges, and outdegree of a node is of incoming edges, and outdegree of a node is
the number of outgoing edge the number of outgoing edges
More definitions More definitions
I o cdgs e ke bt s
endpoints of the ed B :
+ An edge s called incident to a node i the s ¢ « Fora directed graph parallel edges are ones
nodeis one of it endpoints. Two nodes are £ with the same direction 0
adjacent (or nm are nelghbm's) i they are AT oS «+ A self-loop is an edge from a node to itself AT B et

incident o the s

e T
number of its incident edge:

+ Ina digraph indegree of a node is the number
of incoming edges, and outdegree of a node s
the number of outgoing edge:

« A path s an sequence of alternating edges

%

L and nodes
—® « Acycle s a path that starts and ends at the
indeg(A) = 1, outdeg(A) =3 same node

« A path ora cycle is asinple f every node on
the path is visited only once

More definitions

+ Two edges are parallel i their both endpoints
are the same.

« For a directed graph parallel ediges are ones
with the same direction

+ Aselfloop is an edge from a node to iself

+ A path i an sequence of alternating edges
and nodes

« Acyeleis a path that starts and ends at the
same node

+ A path ora cycleis a single f very node on
the path s visited only once

More definitions

« Two edges are parale if their both endpoints

are the same

« For a directed graph parallel edges are ones.
with the same direction

« A self-loop is an edge from a node to itself

« A path s an sequence of alternating edges
and nodes

A= T 7
D + Acycle s a path that starts and ends at the

« A path ora cyele is asinple f every node on
the path is visited only once

o—u
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More definitions

« Two edges are parallel if their both endpoints
are the same.

« For a directed graph parallel edges are ones
with the same direction

More definitions

« Two edges are parale if their both endpoints
are the same

« For a directed graph parallel edges are ones.
with the same direction

self-loop is an edge from a node to itsel OB—— « A self-loop is an edge from a node to itsel OB ——
Nk someigpomsnote il g oo el famarodewisal A0
« Acycleis a path that starts and ends at the D « Acycleis a path that starts and ends at the D
e A
More definitions More definitions
e e e oy ok
i - < N ol odes e AN
s Ko o et et o
same node

+ A path ora cycle s a simple f every node on
the path is visited only once

« Ifa graph s not connected, the maximally
ted the

connected components

More definitions

+ Anode X s rachabie from another (Y) if
there s (directed) path from Y to X

« A graph is connected fall nodes are
reachable from eac

+ A directed graph is strongly connected i all
nodes are reachable from each othe

« A subgraph a graph formed by a subset of

and edges of a graph

« 1fa graph is not connected, the maximally
connected subgraphs are called the G
connected components

More definitions

« Anode Xis reacabie from another (Y) if
thereis a (directed) path from Y to X

« Agraph is comnected if all nodes are:
reachable from each other

* A diecd gopt s sl sl 131

e are reachable from each

« Asubgraph a graph formed by a abetof
nodes and edges of a grapl

« Ifa graph is not connected, the maximally
connected subgraphs are called the
connected components

N,
P

« Aspanning )ubgnwh ofa gmph s subgraph that includes all nodes of the
graph

« Atreeis a connected graph without eycles
« A spanning tree is a spanning subgraph which is  tree
« Aforest s a disconnected acyclic graph

More definitions More definitions
« Anode X is reachable from another (Y) if « Anode X is reachable from another (Y) if
there is a (directed) path from Y to X there is a (directed) path from Y to X
+ A graph i connected i all nodes are + A graph s comnected i all nodes are
reachable from each other reachable from each other N,
+ Adirected graph i trongly conncted i all + A directed graphis strongly connected i al
nodes re reachable from each other o ae reachable from each other
+ Asubgraph a graph formed by a subset of + Asubgraph a graph formed by a subsetof ol—F
nodes and edges of  grap nodes and edges of a graph e
« Ifa graph s not connected, the maximally « Ifa graph i not connected,the maximally
connected subgraphs are called the ted the N ]
connected components connected components
More definitions More definitions
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« Aspanning subgraph of a graph is a subgraph that includes all nodes of the
graph

« Atreeis a connected graph without cycles
« A spanning treeis a spanning subgraph which is a tree
« Aforest s a disconnected acyelic graph

Some properties Some properties
ek degres o bres e manbec o e s
 Fora simple undirected graph with r nodes and m edges
+ For an undirected graph with m edges and set of nodes V
deglv) = 2m
e no porale edges
+ All edgesare counted twicefor each node they are incident to  there areno el loops
R mum degree of a node s~
i g St < « Putting this together with the previous property
« For a directed graph with m edges and set of nodes V. s B P property
i _nn-1)
3 indeg(v) = Y outdeglv) — <ot sme
=t i  Fora directed graph with n nodes and m edges
m<nm-1)




The graph ADT

« A graph is a collection of nodes and edges
« Basic operations include
d a new node
onove_sade (1) removean oxistng node
diacaat(a,v) hum v f oo adscent (o s digrph ru nly f
here s dired Ik
s i o B (O O T I O
bl trough ougong s by dcal)
Femove an existing
addanew edge
enumerate the nodes n the graph
enumerate the edges in the graph

add_nod

netghbors(v)

romove_odga(u,v)
Cedge(u,v)

nodes )

adges()

Edge list

+ Wekeep a simple a simple lst of
edges (and possibly nodes)
+ Simple structure, complexity of
ome operations (n nodes, T
)

)

aja
asighborate) Olm]

Adjacency list

+ We keep simple lists for nodes and their
neighbors.

+ Wekeep an x n matrix

+ Complexity of some operations (assuming Al Bl c|[ D + Complexity of some operations:
an array-based implemenetatoin): add_node(v) O(n)
) o A e| k| g node(v) Ofn)
m Fatacencta,n Ol
5 O e dgt)) B i n nesgabors(v) O(n)
netgabors (v) O(n + deg(v])
c
D
Interesting problems on graphs Summary

« Isthere a (directed) path between two nodes?
 Whatis the shortest path between two nodes?
« s there a cycle in the graph?

« s there a cyele that uses each node exactly once? (Hamiltonian path)

« Are all nodes of the graph connected?

« s there a node that breaks the connectivity if removed?

« I the graph planar: can it be drawn without crossing edges?

« Are two graphs isomorphic (have the same structure)?

 Whats the importance of a web page, based on the links pointing to t?

+ Graphs are data structures with many applications.
+ Reading on graphs: Goodrich, Tamassia, and Goldwasser (2013, chapter 14),
Next:
+ Graph traversals
« Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)
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