Graph Traversal

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Cagr1 Coltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tiibingen
Seminar fiir Sprachwissenschaft

Winter Semester 2024 /25

Introduction/motivation Depth first Breadth first Problems solved by traversal

Graph traversal

o A graph traversal is a systematic way to visit all nodes in a graph

 Graph traversal is one of the basic tasks on a graph, answering many
interesting questions

— Is there a path from one node to another?

What is the shortest path (with minimum number of edges) between two nodes?
Is the graph connected?

Is the graph cyclic?

o Two main methods of traversals are breadth-first and depth-first

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 1/14

Depth first

DES - intuition

« Depth first search follows the same
idea as exploring a labyrinth with a ®
string and a chalk

°
o Visit each intersection (node), while
marking the path you took with the *_
string ° °
o Mark each visited node, backtrack ° |
(following the string) when hit a
dead end

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 2/14

Depth first

DES - intuition

« Depth first search follows the same
idea as exploring a labyrinth with a ®
string and a chalk

°
o Visit each intersection (node), while
marking the path you took with the *_
string ° ®
o Mark each visited node, backtrack ° |
(following the string) when hit a
dead end

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 2/14

Depth first

DES - intuition

« Depth first search follows the same
idea as exploring a labyrinth with a ®
string and a chalk

° °
o Visit each intersection (node), while o
marking the path you took with the — T
string °

o Mark each visited node, backtrack ° |
(following the string) when hit a
dead end

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 2/14

Depth first

DES - intuition

« Depth first search follows the same
idea as exploring a labyrinth with a ®
string and a chalk

°

o Visit each intersection (node), while o
marking the path you took with the — L

string ° ®

o Mark each visited node, backtrack ° |
(following the string) when hit a
dead end

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 2/14

Depth first

DES - intuition

« Depth first search follows the same
idea as exploring a labyrinth with a ®
string and a chalk

°

o Visit each intersection (node), while o
marking the path you took with the — L

string ° ®

o Mark each visited node, backtrack ° |
(following the string) when hit a
dead end

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 2/14

Depth first

DES - intuition

« Depth first search follows the same

idea as exploring a labyrinth with a ®
string and a chalk ® | e o
o Visit each intersection (node), while
marking the path you took with the — L
string ° ®
o Mark each visited node, backtrack ° | -
(following the string) when hit a o
dead end

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 2/14

Depth first

DES - intuition

« Depth first search follows the same

idea as exploring a labyrinth with a ®
string and a chalk ° | s o
o Visit each intersection (node), while
marking the path you took with the — L
string ° ®
o Mark each visited node, backtrack ° | -
(following the string) when hit a o
dead end

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 2/14

Depth first

DES - intuition

« Depth first search follows the same
idea as exploring a labyrinth with a ®
string and a chalk ® | e o

o Visit each intersection (node), while

marking the path you took with the — L

string ®
o Mark each visited node, backtrack I |

(following the string) when hit a o

dead end

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 2/14

Depth first

DES - intuition

« Depth first search follows the same
idea as exploring a labyrinth with a ®
string and a chalk

1

o Visit each intersection (node), while
marking the path you took with the
string

o Mark each visited node, backtrack
(following the string) when hit a
dead end

Il
E

*—0

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 2/14

Depth first

DES - intuition

« Depth first search follows the same

idea as exploring a labyrinth with a ®
string and a chalk ° | s o
o Visit each intersection (node), while
marking the path you took with the — L
string *— ®
o Mark each visited node, backtrack I | -
(following the string) when hit a o
dead end

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 2/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DEFS - algorithm

def dfs(start, visited=None):
if visited is None:
visited = {start: None}

for node in start.neighbors():

if node not in visited:
visited[node] = start
dfs(node, visited)

C. Coltekin, SfS / University of Tiibingen

Depth-first search (DFS) is easy with
recursion

DFS starts from a start node

Marks each node it visits as visited (typically
put it in a set data structure)

Then, take an arbitrary unvisited neighbor,
and continue visiting the nodes recursively
Algorithm terminates when backtracking
leads to the start node with no unvisited
nodes left

Winter Semester 2024 /25 3/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

A o The discovery edges form the DFS tree

e
L

I

o The other edges are called non-tree edges

The edges to an ancestor in the DFS tree are
called back edges

o The edges to a descendant node in the DFS
tree are called

Q<«—m«——
[]

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal
P!

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree

o The other edges are called non-tree edges

The edges to an ancestor in the DFS tree are
called back edges

o The edges to a descendant node in the DFS
tree are called

Q<«—m«——
[]

D
Z

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal
P!

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree

The other edges are called non-tree edges

o The edges to an ancestor in the DFS tree are
called back edges

o The edges to a descendant node in the DFS
tree are called

O%m%.
°

o,
Z

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree
o The other edges are called non-tree edges

$\ ?
C/ D T o The edges to an ancestor in the DFS tree are
F / G

called back edges

o The edges to a descendant node in the DFS
tree are called

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

DFS - demonstration, definitions

C. Coltekin,

Introduction/motivation Depth first Breadth first Problems solved by traversal

o,
Z

SfS / University of Tiibingen

®—e—6

The edges that we take to discover a new
node are called the discovery edges

The discovery edges form the DFS tree
The other edges are called non-tree edges

The edges to an ancestor in the DFS tree are
called back edges

The edges to a descendant node in the DFS
tree are called

The edges to a non-ancestor /non-descendant
node in the BFS tree are called

Winter Semester 2024 /25 4/14

DFS - demonstration, definitions

C. Coltekin,

Introduction/motivation Depth first Breadth first Problems solved by traversal

o,
Z

SfS / University of Tiibingen

®—e—6

The edges that we take to discover a new
node are called the discovery edges

The discovery edges form the DFS tree
The other edges are called non-tree edges

The edges to an ancestor in the DFS tree are
called back edges

The edges to a descendant node in the DFS
tree are called

The edges to a non-ancestor /non-descendant
node in the BFS tree are called

Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree

o The other edges are called non-tree edges

?
C o The edges to an ancestor in the DFS tree are
/ called back edges
. The edges to a descendant node in the DFS

tree are called

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

L
J

F<

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree

o The other edges are called non-tree edges

The edges to an ancestor in the DFS tree are
called back edges

o The edges to a descendant node in the DFS
tree are called

®—e—6

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree
o The other edges are called non-tree edges

. ? o The edges to an ancestor in the DFS tree are
y

tree are called

C
& called back edges
.A(o The edges to a descendant node in the DFS

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree
o The other edges are called non-tree edges

cC——® o The edges to an ancestor in the DFS tree are
g called back edges

o The edges to a descendant node in the DFS
tree are called

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree
o The other edges are called non-tree edges

cC——® ‘ o The edges to an ancestor in the DFS tree are
g called back edges

o The edges to a descendant node in the DFS
tree are called

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree
o The other edges are called non-tree edges

c——® ‘ o The edges to an ancestor in the DFS tree are
g called back edges

o The edges to a descendant node in the DFS
tree are called

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree
o The other edges are called non-tree edges

.*>. ? o The edges to an ancestor in the DFS tree are
»

called back edges

o The edges to a descendant node in the DFS
tree are called

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree
o The other edges are called non-tree edges

' o The edges to an ancestor in the DFS tree are
g called back edges

o The edges to a descendant node in the DFS
tree are called

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

o The discovery edges form the DFS tree
o The other edges are called non-tree edges

' o The edges to an ancestor in the DFS tree are
g called back edges

o The edges to a descendant node in the DFS
tree are called

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 4/14

Depth first

Properties of DFS

o DFS visits all nodes in the connected component from the start node
« Discovery edges form a spanning tree of the connected component

o If anode v is connected to the start node, there is a path from the start node v
in the DFS tree

o The DFS algorithm visits each node and checks each edge once (twice for
undirected graphs)

o The complexity of the algorithm is O(n + m) for n nodes and m edges

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 5/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

Dangers of DFS

PREFPRING FRADATE:] [~V ¥~ ¥ "V " Y ~—] L¢“’\’\ﬁJ“V"VW*v~_
M OKAY, WHAT KINDS OF HAM. WHICH SNAKES ARE
\WHAT SITUATIONS EMERGENCIES (AN HOPPEN? DANGEROUS? LETS SEE... ;TJE&E%WH EWING
PREPARE. RRY DANGER VENGMS,
G R DA SREBE DAQERITAE 7 /g
7} MEDICAL EMERGENCY B) LIGHTNING STRIKE. 1) GRRTER SNAKE. 7 WOONSISTENT: TLL

2) DANCING ©) FALLFRIM CHAR A SPREADSHEET T ORGRANIZE I
2)R0D T BXFENSIVE QrRERED
o ¢ 5]
o 0 0 OC}
[

IMHERE P BY Dy, THE INAND

YOUUP. YouRE TAIFAN HAS THE DEADLEST

NGTDRES‘.ED\ 7 VENOM OF ANy SNAKE
J/

IS

https://xkcd.com/761/

T REALY NEED ToSTop
USING DEPTH-FIRST SEARCHES.

. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 6/14
y g

https://xkcd.com/761/

Breadth first

BES - intuition

o A way to think about breadth-first

search (BFS) is to explore all options °
in parallel
° | e o
o In the maze, at every intersection
send out people in all directions ® ®
o BFS divides the nodes into levels: P °
— starting node at level 0 —
- nodes directly accessible from start ® | °

at level 1

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 7 /14

Breadth first

BES - intuition

o A way to think about breadth-first

search (BFS) is to explore all options °
in parallel
° | e o
o In the maze, at every intersection
send out people in all directions ® ®
o BFS divides the nodes into levels: P
— starting node at level 0 —
- nodes directly accessible from start ® | °

at level 1

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 7 /14

Breadth first

BES - intuition

o A way to think about breadth-first

search (BFS) is to explore all options °
in parallel o |
o In the maze, at every intersection
send out people in all directions ®
o BFS divides the nodes into levels: P
— starting node at level 0
- nodes directly accessible from start ® |

at level 1

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 7 /14

Breadth first

BES - intuition

o A way to think about breadth-first

search (BFS) is to explore all options °
in parallel
° | °
o In the maze, at every intersection
send out people in all directions ® b ¢
o BFS divides the nodes into levels: P
— starting node at level 0 —
- nodes directly accessible from start ® |

at level 1

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 7 /14

Breadth first

BES - intuition

o A way to think about breadth-first
search (BFS) is to explore all options °
in parallel |

o In the maze, at every intersection
send out people in all directions ®
o BFS divides the nodes into levels:

— starting node at level 0
- nodes directly accessible from start
atlevel 1

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 7 /14

Breadth first

BES - intuition

o A way to think about breadth-first
search (BFS) is to explore all options °
in parallel

o In the maze, at every intersection
send out people in all directions
o BFS divides the nodes into levels:

— starting node at level 0
- nodes directly accessible from start
atlevel 1

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 7 /14

Introduction/motivation Depth first Breadth first Problems solved by traversal

BES - intuition

o A way to think about breadth-first
search (BFS) is to explore all options °
in parallel |

o In the maze, at every intersection T

send out people in all directions <~

o BFS divides the nodes into levels:
— starting node at level 0

- nodes directly accessible from start
atlevel 1

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 7 /14

Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - algorithm

def bfs(start):
queue = [start]
visited = {start: None}
while queue:
current = queue.pop(0)

for node in current.neighbors():

if node not in visited:
visited[node] = current
queue . append (node)

C. Coltekin, SfS / University of Tiibingen

o Typically BFS is implemented
with a queue

 The algorithm visits nodes
closest to the start node first

o If you replace the queue with a
stack, you get an iterative
version of the DFS

Winter Semester 2024/25 8/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

 Similar to DFS, the edges that we take to
discover a new node are called the discovery

A B edges

l \ l o The discovery edges form the BFS tree

C D E o The other edges are called non-tree edges
g l o The edges to an ancestor in the BFS tree are

F G called back edges

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 9/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

 Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

o The discovery edges form the BFS tree

The other edges are called non-tree edges

o The edges to an ancestor in the BFS tree are
called back edges

O
O<«—m«—

Ve

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 9/14

Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

 Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

The discovery edges form the BFS tree

o The other edges are called non-tree edges

o The edges to an ancestor in the BFS tree are
called back edges

O<7t11<7.
°

i

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 9/14
y g

Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

?\ ?
« o The other edges are called non-tree edges
./ o The edges to an ancestor in the BFS tree are
G

called back edges

 Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

o The discovery edges form the BFS tree

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 9/14
y g

Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

>

 Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

o The discovery edges form the BFS tree

The other edges are called non-tree edges

The edges to an ancestor in the BFS tree are
called back edges

®—e—6

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 9/14
y g

Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

>

 Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

o The discovery edges form the BFS tree

The other edges are called non-tree edges

The edges to an ancestor in the BFS tree are
called back edges

®—e—6

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called

. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 9/14
y g

Introduction/motivation Depth first Breadth first Problems solved by traversal

Properties of BFS

 DFS visits all nodes in the connected component from the start node

Discovery edges form a spanning tree of the connected component

If a node v is reachable from the start node, the BES finds the shortest path from
the start node to v

The BFS algorithm visits each node and checks each edge once

The complexity of the algorithm is O(n + m) for n nodes and m edges

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 10/ 14

Introduction/motivation Depth first Breadth first Problems solved by traversal

Problems solved by graph traversals

Finding a path between two nodes (if one exists)

Testing whether G is connected

Computing connected components of G

Detecting cycles

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25

11/ 14

Introduction/motivation Depth first Breadth first Problems solved by traversal

Finding a path between two nodes

C. Coltekin,

Traverse the graph from the

source node, record the def find_path(source, target, visited):

path = []
if target in visited:
path.append(target)

discovery edges

Start from the target node,

trace the path back to the current = target

source while current is not source:

With BFS, we get the parent = visited[current]

shortest path path.appfnd(parent)
current = parent

Running time is the length return path.reverse()

of the path:

SfS / University of Tiibingen Winter Semester 2024 /25

12/ 14

Introduction/motivation Depth first Breadth first Problems solved by traversal

Finding a path between two nodes

C. Coltekin,

Traverse the graph from the

source node. record the def find_path(source, target, visited):

path = []
if target in visited:
path.append(target)

discovery edges

Start from the target node,

trace the path back to the current = target
source while current is not source:
With BFS, we get the parent = visited[current]

path.append(parent)

R current = parent
Running time is the length return path.reverse()

of the path: O(n)

shortest path

SfS / University of Tiibingen Winter Semester 2024 /25

12/ 14

Introduction/motivation Depth first Breadth first Problems solved by traversal

Some other problems solved by graph traversal

o Is the graph connected?

- Yes if the ‘visited” nodes have the same length as the nodes of the graph
« Find the connected components

— Run traversal multiple times, until all nodes are visited
o Is the graph cyclic?

— A directed graph is cyclic if there is a back edge during graph traversal

— A undirected graph is cyclic if a traversal finds any visited nodes (if there are
back, forward or cross edges)

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 13 /14

Summary

o Traversal is one of the basic operations in graphs
 Graph traversals already solve some interesting problems:

— Find a path (shortest with BFS)
— Test connectivity, find connected components
— Find cycles

o Reading on graphs: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)
Next:
o More graph algorithms: special problems on directed graphs, shortest paths

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 14 /14

Acknowledgments, credits, references

[1 Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. 1sen:

9781118476734.

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 Al

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 A2

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 A3

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 A4

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 A5

	Graph Traversal
	Introduction/motivation
	Graph traversal

	Depth first
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - algorithm
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	Properties of DFS
	Dangers of DFS

	Breadth first
	BFS - intuition
	BFS - intuition
	BFS - intuition
	BFS - intuition
	BFS - intuition
	BFS - intuition
	BFS - intuition
	BFS - algorithm
	BFS - demonstration
	BFS - demonstration
	BFS - demonstration
	BFS - demonstration
	BFS - demonstration
	BFS - demonstration
	Properties of BFS

	Problems solved by traversal
	Problems solved by graph traversals
	Finding a path between two nodes
	Finding a path between two nodes
	Some other problems solved by graph traversal

	
	Summary

	Appendix
	Acknowledgments, credits, references

