
Graph Traversal
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2024/25

version: 151cdd0+ @2024-11-13



Introduction/motivation Depth first Breadth first Problems solved by traversal

Graph traversal

• A graph traversal is a systematic way to visit all nodes in a graph
• Graph traversal is one of the basic tasks on a graph, answering many

interesting questions
– Is there a path from one node to another?
– What is the shortest path (with minimum number of edges) between two nodes?
– Is the graph connected?
– Is the graph cyclic?
– …

• Two main methods of traversals are breadth-first and depth-first

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 1 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - intuition

• Depth first search follows the same
idea as exploring a labyrinth with a
string and a chalk

• Visit each intersection (node), while
marking the path you took with the
string

• Mark each visited node, backtrack
(following the string) when hit a
dead end

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - intuition

• Depth first search follows the same
idea as exploring a labyrinth with a
string and a chalk

• Visit each intersection (node), while
marking the path you took with the
string

• Mark each visited node, backtrack
(following the string) when hit a
dead end

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - intuition

• Depth first search follows the same
idea as exploring a labyrinth with a
string and a chalk

• Visit each intersection (node), while
marking the path you took with the
string

• Mark each visited node, backtrack
(following the string) when hit a
dead end

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - intuition

• Depth first search follows the same
idea as exploring a labyrinth with a
string and a chalk

• Visit each intersection (node), while
marking the path you took with the
string

• Mark each visited node, backtrack
(following the string) when hit a
dead end

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - intuition

• Depth first search follows the same
idea as exploring a labyrinth with a
string and a chalk

• Visit each intersection (node), while
marking the path you took with the
string

• Mark each visited node, backtrack
(following the string) when hit a
dead end

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - intuition

• Depth first search follows the same
idea as exploring a labyrinth with a
string and a chalk

• Visit each intersection (node), while
marking the path you took with the
string

• Mark each visited node, backtrack
(following the string) when hit a
dead end

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - intuition

• Depth first search follows the same
idea as exploring a labyrinth with a
string and a chalk

• Visit each intersection (node), while
marking the path you took with the
string

• Mark each visited node, backtrack
(following the string) when hit a
dead end

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - intuition

• Depth first search follows the same
idea as exploring a labyrinth with a
string and a chalk

• Visit each intersection (node), while
marking the path you took with the
string

• Mark each visited node, backtrack
(following the string) when hit a
dead end

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - intuition

• Depth first search follows the same
idea as exploring a labyrinth with a
string and a chalk

• Visit each intersection (node), while
marking the path you took with the
string

• Mark each visited node, backtrack
(following the string) when hit a
dead end

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - intuition

• Depth first search follows the same
idea as exploring a labyrinth with a
string and a chalk

• Visit each intersection (node), while
marking the path you took with the
string

• Mark each visited node, backtrack
(following the string) when hit a
dead end

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - algorithm

def dfs(start, visited=None):
if visited is None:

visited = {start: None}
for node in start.neighbors():

if node not in visited:
visited[node] = start
dfs(node, visited)

• Depth-first search (DFS) is easy with
recursion

• DFS starts from a start node
• Marks each node it visits as visited (typically

put it in a set data structure)
• Then, take an arbitrary unvisited neighbor,

and continue visiting the nodes recursively
• Algorithm terminates when backtracking

leads to the start node with no unvisited
nodes left

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

A B

C D E

F G

• The edges that we take to discover a new
node are called the discovery edges

• The discovery edges form the DFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the DFS tree are

called back edges
• The edges to a descendant node in the DFS

tree are called forward edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

Properties of DFS

• DFS visits all nodes in the connected component from the start node
• Discovery edges form a spanning tree of the connected component
• If a node v is connected to the start node, there is a path from the start node v

in the DFS tree
• The DFS algorithm visits each node and checks each edge once (twice for

undirected graphs)
• The complexity of the algorithm is O(n+m) for n nodes and m edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

Dangers of DFS

https://xkcd.com/761/

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 14

https://xkcd.com/761/


Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - intuition

• A way to think about breadth-first
search (BFS) is to explore all options
in parallel

• In the maze, at every intersection
send out people in all directions

• BFS divides the nodes into levels:
– starting node at level 0
– nodes directly accessible from start

at level 1
– …

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - intuition

• A way to think about breadth-first
search (BFS) is to explore all options
in parallel

• In the maze, at every intersection
send out people in all directions

• BFS divides the nodes into levels:
– starting node at level 0
– nodes directly accessible from start

at level 1
– …

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - intuition

• A way to think about breadth-first
search (BFS) is to explore all options
in parallel

• In the maze, at every intersection
send out people in all directions

• BFS divides the nodes into levels:
– starting node at level 0
– nodes directly accessible from start

at level 1
– …

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - intuition

• A way to think about breadth-first
search (BFS) is to explore all options
in parallel

• In the maze, at every intersection
send out people in all directions

• BFS divides the nodes into levels:
– starting node at level 0
– nodes directly accessible from start

at level 1
– …

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - intuition

• A way to think about breadth-first
search (BFS) is to explore all options
in parallel

• In the maze, at every intersection
send out people in all directions

• BFS divides the nodes into levels:
– starting node at level 0
– nodes directly accessible from start

at level 1
– …

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - intuition

• A way to think about breadth-first
search (BFS) is to explore all options
in parallel

• In the maze, at every intersection
send out people in all directions

• BFS divides the nodes into levels:
– starting node at level 0
– nodes directly accessible from start

at level 1
– …

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - intuition

• A way to think about breadth-first
search (BFS) is to explore all options
in parallel

• In the maze, at every intersection
send out people in all directions

• BFS divides the nodes into levels:
– starting node at level 0
– nodes directly accessible from start

at level 1
– …

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - algorithm

def bfs(start):
queue = [start]
visited = {start: None}
while queue:

current = queue.pop(0)
for node in current.neighbors():

if node not in visited:
visited[node] = current
queue.append(node)

• Typically BFS is implemented
with a queue

• The algorithm visits nodes
closest to the start node first

• If you replace the queue with a
stack, you get an iterative
version of the DFS

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

A B

C D E

F G

• Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

• The discovery edges form the BFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the BFS tree are

called back edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

A B

C D E

F G

• Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

• The discovery edges form the BFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the BFS tree are

called back edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

A B

C D E

F G

• Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

• The discovery edges form the BFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the BFS tree are

called back edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

A B

C D E

F G

• Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

• The discovery edges form the BFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the BFS tree are

called back edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

A B

C D E

F G

• Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

• The discovery edges form the BFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the BFS tree are

called back edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - demonstration

A B

C D E

F G

• Similar to DFS, the edges that we take to
discover a new node are called the discovery
edges

• The discovery edges form the BFS tree
• The other edges are called non-tree edges
• The edges to an ancestor in the BFS tree are

called back edges
• The edges to a non-ancestor/non-descendant

node in the BFS tree are called cross edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

Properties of BFS

• DFS visits all nodes in the connected component from the start node
• Discovery edges form a spanning tree of the connected component
• If a node v is reachable from the start node, the BFS finds the shortest path from

the start node to v

• The BFS algorithm visits each node and checks each edge once
• The complexity of the algorithm is O(n+m) for n nodes and m edges

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

Problems solved by graph traversals

• Finding a path between two nodes (if one exists)
• Testing whether G is connected
• Computing connected components of G
• Detecting cycles

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

Finding a path between two nodes

• Traverse the graph from the
source node, record the
discovery edges

• Start from the target node,
trace the path back to the
source

• With BFS, we get the
shortest path

• Running time is the length
of the path:

O(n)

def find_path(source, target, visited):
path = []
if target in visited:

path.append(target)
current = target
while current is not source:

parent = visited[current]
path.append(parent)
current = parent

return path.reverse()

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

Finding a path between two nodes

• Traverse the graph from the
source node, record the
discovery edges

• Start from the target node,
trace the path back to the
source

• With BFS, we get the
shortest path

• Running time is the length
of the path: O(n)

def find_path(source, target, visited):
path = []
if target in visited:

path.append(target)
current = target
while current is not source:

parent = visited[current]
path.append(parent)
current = parent

return path.reverse()

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

Some other problems solved by graph traversal

• Is the graph connected?
– Yes if the ‘visited’ nodes have the same length as the nodes of the graph

• Find the connected components
– Run traversal multiple times, until all nodes are visited

• Is the graph cyclic?
– A directed graph is cyclic if there is a back edge during graph traversal
– A undirected graph is cyclic if a traversal finds any visited nodes (if there are

back, forward or cross edges)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 13 / 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

Summary

• Traversal is one of the basic operations in graphs
• Graph traversals already solve some interesting problems:

– Find a path (shortest with BFS)
– Test connectivity, find connected components
– Find cycles

• Reading on graphs: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)
Next:

• More graph algorithms: special problems on directed graphs, shortest paths

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 14 / 14



Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN:
9781118476734.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.1



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.2



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.3



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.4



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.5


	Graph Traversal
	Introduction/motivation
	Graph traversal

	Depth first
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - intuition
	DFS - algorithm
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	DFS - demonstration, definitions
	Properties of DFS
	Dangers of DFS

	Breadth first
	BFS - intuition
	BFS - intuition
	BFS - intuition
	BFS - intuition
	BFS - intuition
	BFS - intuition
	BFS - intuition
	BFS - algorithm
	BFS - demonstration
	BFS - demonstration
	BFS - demonstration
	BFS - demonstration
	BFS - demonstration
	BFS - demonstration
	Properties of BFS

	Problems solved by traversal
	Problems solved by graph traversals
	Finding a path between two nodes
	Finding a path between two nodes
	Some other problems solved by graph traversal

	
	Summary


	Appendix
	Acknowledgments, credits, references


