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Introduction/motivation Depth first Breadth first  Problems solved by traversal

Graph traversal

o A graph traversal is a systematic way to visit all nodes in a graph

 Graph traversal is one of the basic tasks on a graph, answering many
interesting questions

— Is there a path from one node to another?

What is the shortest path (with minimum number of edges) between two nodes?
Is the graph connected?

Is the graph cyclic?

o Two main methods of traversals are breadth-first and depth-first
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Depth first

DES - intuition

« Depth first search follows the same
idea as exploring a labyrinth with a ®
string and a chalk

°
o Visit each intersection (node), while
marking the path you took with the *_
string ° °
o Mark each visited node, backtrack ° |
(following the string) when hit a
dead end
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Introduction/motivation Depth first Breadth first Problems solved by traversal

DEFS - algorithm

def dfs(start, visited=None):
if visited is None:
visited = {start: None}

for node in start.neighbors():

if node not in visited:
visited[node] = start
dfs(node, visited)

C. Coltekin,  SfS / University of Tiibingen

Depth-first search (DFS) is easy with
recursion

DFS starts from a start node

Marks each node it visits as visited (typically
put it in a set data structure)

Then, take an arbitrary unvisited neighbor,
and continue visiting the nodes recursively
Algorithm terminates when backtracking
leads to the start node with no unvisited
nodes left
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Introduction/motivation Depth first Breadth first Problems solved by traversal

DFS - demonstration, definitions

o The edges that we take to discover a new
node are called the discovery edges

A o The discovery edges form the DFS tree

e
L

I

o The other edges are called non-tree edges

The edges to an ancestor in the DFS tree are
called back edges

o The edges to a descendant node in the DFS
tree are called

Q<«—m«——
[ ]

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called
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The edges that we take to discover a new
node are called the discovery edges

The discovery edges form the DFS tree
The other edges are called non-tree edges

The edges to an ancestor in the DFS tree are
called back edges

The edges to a descendant node in the DFS
tree are called

The edges to a non-ancestor /non-descendant
node in the BFS tree are called
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Depth first

Properties of DFS

o DFS visits all nodes in the connected component from the start node
« Discovery edges form a spanning tree of the connected component

o If anode v is connected to the start node, there is a path from the start node v
in the DFS tree

o The DFS algorithm visits each node and checks each edge once (twice for
undirected graphs)

o The complexity of the algorithm is O(n + m) for n nodes and m edges
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Dangers of DFS
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Breadth first

BES - intuition

o A way to think about breadth-first

search (BFS) is to explore all options °
in parallel
° | e o
o In the maze, at every intersection
send out people in all directions ® ®
o BFS divides the nodes into levels: P °
— starting node at level 0 —
- nodes directly accessible from start ® | °

at level 1
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Introduction/motivation Depth first Breadth first Problems solved by traversal

BFS - algorithm

def bfs(start):
queue = [start]
visited = {start: None}
while queue:
current = queue.pop(0)

for node in current.neighbors():

if node not in visited:
visited[node] = current
queue . append (node)

C. Coltekin,  SfS / University of Tiibingen

o Typically BFS is implemented
with a queue

 The algorithm visits nodes
closest to the start node first

o If you replace the queue with a
stack, you get an iterative
version of the DFS
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BFS - demonstration

 Similar to DFS, the edges that we take to
discover a new node are called the discovery

A B edges

l \ l o The discovery edges form the BFS tree

C D E o The other edges are called non-tree edges
g l o The edges to an ancestor in the BFS tree are

F G called back edges

o The edges to a non-ancestor/non-descendant
node in the BFS tree are called
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Introduction/motivation Depth first Breadth first Problems solved by traversal

Properties of BFS

 DFS visits all nodes in the connected component from the start node

Discovery edges form a spanning tree of the connected component

If a node v is reachable from the start node, the BES finds the shortest path from
the start node to v

The BFS algorithm visits each node and checks each edge once

The complexity of the algorithm is O(n + m) for n nodes and m edges

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 10/ 14



Introduction/motivation  Depth first  Breadth first Problems solved by traversal

Problems solved by graph traversals

Finding a path between two nodes (if one exists)

Testing whether G is connected

Computing connected components of G

Detecting cycles

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25

11/ 14



Introduction/motivation Depth first Breadth first Problems solved by traversal

Finding a path between two nodes

C. Coltekin,

Traverse the graph from the

source node, record the def find_path(source, target, visited):

path = []
if target in visited:
path.append(target)

discovery edges

Start from the target node,

trace the path back to the current = target

source while current is not source:

With BFS, we get the parent = visited[current]

shortest path path.appfnd(parent)
current = parent

Running time is the length return path.reverse()

of the path:

SfS / University of Tiibingen Winter Semester 2024 /25
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Introduction/motivation  Depth first  Breadth first Problems solved by traversal

Some other problems solved by graph traversal

o Is the graph connected?

- Yes if the ‘visited” nodes have the same length as the nodes of the graph
« Find the connected components

— Run traversal multiple times, until all nodes are visited
o Is the graph cyclic?

— A directed graph is cyclic if there is a back edge during graph traversal

— A undirected graph is cyclic if a traversal finds any visited nodes (if there are
back, forward or cross edges)

C. Coltekin,  SfS / University of Tiibingen Winter Semester 2024 /25 13 /14



Summary

o Traversal is one of the basic operations in graphs
 Graph traversals already solve some interesting problems:

— Find a path (shortest with BFS)
— Test connectivity, find connected components
— Find cycles

o Reading on graphs: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)
Next:
o More graph algorithms: special problems on directed graphs, shortest paths
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