Finite state automata

Data Structures and Algorithms for Computational Linguistics III (ISCL-BA-07)

Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de

University of Tübingen Seminar für Sprachwissenschaft

Winter Semester 2024/25

version: c8d9876 @2025-01-08

Why study finite-state automata?

- Finite-state automata are efficient models of computation
- There are many applications
 - Electronic circuit design
 - Workflow management
 - Games
 - Pattern matching
 - ...

But more importantly ;-)

- Tokenization, stemming
- Morphological analysis
- Spell checking
- Shallow parsing/chunking

- ...

Finite-state automata (FSA)

- A finite-state machine is in one of a finite-number of states in a given time
- The machine changes its state based on its input
- Every regular language is generated/recognized by an FSA
- Every FSA generates/recognizes a regular language
- Two flavors:
 - Deterministic finite automata (DFA)
 - Non-deterministic finite automata (NFA)

Note: the NFA is a superset of DFA.

FSA as a graph

- An FSA is a directed graph
- States are represented as nodes
- Transitions are labeled edges
- One of the states is the *initial state*
- Some states are accepting states

Languages and automata

- Recognizing strings from a language defined by a grammar is a fundamental question in computer science
- The efficiency of computation, and required properties of computing device depends on the grammar (and the language)
- A well-known hierarchy of grammars both in computer science and linguistics is the *Chomsky hierarchy*
- Each grammar in the Chomsky hierarchy corresponds to an abstract computing device (an automaton)
- The class of *regular grammars* are the class that corresponds to *finite state automata*

How to describe a language? Formal grammars

A formal *grammar* is a finite specification of a (formal) language.

- We consider languages as sets of strings, for a finite language, we can (conceivably) list all strings
- How to define an infinite language?
 - Is the definition {ba, baa, baaa, baaaa, . . .} 'formal enough'?

How to describe a language? Formal grammars

A formal *grammar* is a finite specification of a (formal) language.

- We consider languages as sets of strings, for a finite language, we can (conceivably) list all strings
- How to define an infinite language?
 - Is the definition $\{ba, baa, baaa, baaaa, ...\}$ 'formal enough'?
 - Using regular expressions, we can define it as baa*

How to describe a language? Formal grammars

A formal *grammar* is a finite specification of a (formal) language.

- We consider languages as sets of strings, for a finite language, we can (conceivably) list all strings
- How to define an infinite language?
 - Is the definition {ba, baa, baaa, baaaa, . . .} 'formal enough'?
 - Using regular expressions, we can define it as baa*
 - We will introduce a more general method for defining languages

Phrase structure grammars

- A phrase structure grammar is a generative device
- If a given string can be generated by the grammar, the string is in the language
- The grammar generates *all* and the *only* strings that are valid in the language
- A phrase structure grammar has the following components
 - Σ A set of *terminal* symbols
 - N A set of non-terminal symbols
- $S \in N$ A special non-terminal, called the start symbol
 - R A set of *rewrite rules* or *production rules* of the form:

 $\alpha \ \rightarrow \ \beta$

which means that the sequence α can be rewritten as β (both α and β are sequences of terminal and non-terminal symbols)

• The strings in the language of the grammar is those that can be derived from S using the rewrite operations

Chomsky hierarchy and automata

Grammar class	Rules	Automata
Unrestricted grammars	$lpha { ightarrow} eta$	Turing machines
Context-sensitive grammars	$\alpha \land \beta \rightarrow \alpha \gamma \beta$	Linear-bounded automata
Context-free grammars	$A{ ightarrow}lpha$	Pushdown automata
Regular grammars	$ \begin{array}{c c} A \rightarrow a & A \rightarrow a \\ A \rightarrow a B & A \rightarrow B a \end{array} $	Finite state automata

Regular grammars: definition

A regular grammar is a tuple $\mathsf{G}=(\Sigma,\mathsf{N},\mathsf{S},\mathsf{R})$ where

- Σ is an alphabet of terminal symbols
- N are a set of non-terminal symbols
- S is a special 'start' symbol $\in N$
- R~ is a set of rewrite rules following one of the following patterns (A, B \in N, $a \in \Sigma, \, \varepsilon$ is the empty string)

Left regular	Right regular	
1. $A \rightarrow a$	1. $A \rightarrow a$	
2. $A \rightarrow Ba$	2. $A \rightarrow aB$	
3. $A \rightarrow \epsilon$	3. $A \rightarrow \epsilon$	

Regular languages: some properties/operations

- $\mathcal{L}_1\mathcal{L}_2$ Concatenation of two languages \mathcal{L}_1 and \mathcal{L}_2 : any sentence of \mathcal{L}_1 followed by any sentence of \mathcal{L}_2
 - $\mathcal{L}^*\;$ Kleene star of $\mathcal{L}\colon \mathcal{L}$ concatenated with itself 0 or more times
 - $\mathcal{L}^{\mathsf{R}}\;$ Reverse of $\mathcal{L} {:}\;$ reverse of any string in \mathcal{L}
 - $\overline{\mathcal{L}}$ Complement of \mathcal{L} : all strings in $\Sigma_{\mathcal{L}}^*$ except the ones in \mathcal{L} $(\Sigma_{\mathcal{L}}^* \mathcal{L})$
- $\mathcal{L}_1 \cup \mathcal{L}_2$ Union of languages \mathcal{L}_1 and \mathcal{L}_2 : strings that are in any of the languages
- $\mathcal{L}_1 \cap \mathcal{L}_2$ Intersection of languages \mathcal{L}_1 and \mathcal{L}_2 : strings that are in both languages

Regular languages are closed under all of these operations.

Three ways to define a regular language

- A language is regular if there is regular grammar that generates/recognizes it
- A language is regular if there is an FSA that generates/recognizes it
- A language is regular if we can define a regular expressions for the language

DFA: formal definition

Formally, a deterministic finite state automaton, M, is a tuple (Σ , Q, q_0 , F, Δ) with

- $\boldsymbol{\Sigma}~$ is the alphabet, a finite set of symbols
- Q a finite set of states
- $q_0\;$ is the start state, $q_0\in Q$
 - $\mathsf{F}\xspace$ is the set of final states, $\mathsf{F}\subseteq Q$
- $\Delta\,$ is a function that takes a state and a symbol in the alphabet, and returns another state $(\Delta:Q\times\Sigma\to Q)$

At any state and for any input, a DFA has a single well-defined action to take.

; }

DFA: formal definition

an example

$$\Sigma = \{a, b\}$$

$$Q = \{q_0, q_1, q_2\}$$

$$q_0 = q_0$$

$$F = \{q_2\}$$

$$\Delta = \{(q_0, a) \rightarrow q_2, \qquad (q_0, b) \rightarrow q_1$$

$$(q_1, a) \rightarrow q_2, \qquad (q_1, b) \rightarrow q_1$$

• Is this FSA deterministic?

error or sink state

- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state

error or sink state

- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state
- For brevity, we skip the explicit error state

error or sink state

- Is this FSA deterministic?
- To make all transitions well-defined, we can add a sink (or error) state
- For brevity, we skip the explicit error state
 - In that case, when we reach a dead end, recognition fails

DFA: the transition table

- $\rightarrow \,$ marks the start state
 - * marks the accepting state(s)

DFA: the transition table

- $\rightarrow \,$ marks the start state
 - * marks the accepting state(s)

- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- 1. Start at q_0
- 2. Process an input symbol, move accordingly
- 3. Accept if in a final state at the end of the input

- What is the complexity of the algorithm?
- How about inputs:
 - bbbb

– aa

A few questions

• What is the language recognized by this FSA?

A few questions

- What is the language recognized by this FSA?
- Can you draw a simpler DFA for the same language?

A few questions

- What is the language recognized by this FSA?
- Can you draw a simpler DFA for the same language?
- Draw a DFA recognizing strings with even number of 'a's over $\Sigma = \{a, b\}$

Non-deterministic finite automata

Formal definition

A non-deterministic finite state automaton, M, is a tuple $(\Sigma, Q, q_0, F, \Delta)$ with

- Σ is the alphabet, a finite set of symbols
- Q a finite set of states
- $q_0\;\; \text{is the start state, } q_0 \in Q$
 - $\mathsf{F}\xspace$ is the set of final states, $\mathsf{F}\subseteq \mathsf{Q}\xspace$
- Δ is a function from (Q, Σ) to P(Q), power set of Q $(\Delta : Q \times \Sigma \to P(Q))$

An example NFA

- We have nondeterminism, e.g., if the first input is a, we need to choose between states 0 or 1
- Transition table cells have sets of states

Dealing with non-determinism

- Follow one of the links, store alternatives, and *backtrack* on failure
- Follow all options in parallel

C. Cöltekin.

as search (with backtracking)

SfS / University of Tübingen

1. Start at q_0

- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

as search (with backtracking)

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

as search (with backtracking)

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

- 1. Start at q₀
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

- 1. Start at q₀
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

as search (with backtracking)

- 1. Start at q₀
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty

Backtrack otherwise

- 1. Start at q₀
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty
- Backtrack otherwise

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

as search (with backtracking)

Agenda (q₁,3) (q₁,1)

- 1. Start at q_0
- 2. Take the next input, place all possible actions to an *agenda*
- 3. Get the next action from the agenda, act
- 4. At the end of input
- Accept if in an accepting state Reject not in accepting state & agenda empty Backtrack otherwise

NFA recognition as search

summary

- Worst time complexity is exponential
 - Complexity is worse if we want to enumerate all derivations
- We used a stack as agenda, performing a depth-first search
- A queue would result in breadth-first search
- If we have a reasonable heuristic A* search may be an option
- Machine learning methods may also guide finding a fast or the best solution

parallel version

1. Start at q_0

- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

- 1. Start at q_0
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

- 1. Start at q_0
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

- 1. Start at q_0
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

- 1. Start at q_0
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

parallel version

- 1. Start at q_0
- 2. Take the next input, mark all possible next states
- 3. If an accepting state is marked at the end of the input, accept

Note: the process is *deterministic*, and *finite-state*.

An exercise

Construct an NFA and a DFA for the language over $\Sigma = \{a, b\}$ where all sentences end with ab.

An exercise

Construct an NFA and a DFA for the language over $\Sigma = \{a, b\}$ where all sentences end with ab.

One more complication: ε transitions

- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ε-NFA can be converted to an NFA

One more complication: ϵ transitions

- An extension of NFA, ϵ -NFA, allows moving without consuming an input symbol, indicated by an ϵ -transition (sometimes called a λ -transition)
- Any ε-NFA can be converted to an NFA

ϵ -transitions need attention

- How does the (depth-first) NFA recognition algorithm we described earlier work on this automaton?
- Can we do without ε transitions?

• Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{e} (k)$, then $(i) \xrightarrow{a} (k)$.

• Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{c} (k)$, then $(i) \xrightarrow{a} (k)$.

• We start with finding the ϵ -closure of all states

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{c} (k)$, then $(i) \xrightarrow{a} (k)$.
- We start with finding the $\varepsilon\text{-}closure$ of all states

- ϵ -closure(q₀) = {q₀}

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{c} (k)$, then $(i) \xrightarrow{a} (k)$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q₀) = {q₀}
 - $\epsilon\text{-closure}(q_1) = \{q_1, q_2\}$

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{c} (k)$, then $(i) \xrightarrow{a} (k)$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q₀) = {q₀}
 - $\epsilon\text{-closure}(q_1) = \{q_1, q_2\}$
 - ϵ -closure(q₂) = {q₂}

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{c} (k)$, then $(i) \xrightarrow{a} (k)$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q₀) = {q₀}
 - $\epsilon\text{-closure}(q_1) = \{q_1, q_2\}$
 - $\epsilon\text{-closure}(q_2) = \{q_2\}$
- For each incoming arc (q_i,q_j) with label ℓ to a node q_j
 - add a new arc (q_i, q_k) with label ℓ , for all $q_k \in \varepsilon$ -closure (q_i)
 - remove all ϵ transitions (q_j, q_k) for all $q_k \in \epsilon$ -closure (q_j)

- Intuition: if $(i) \xrightarrow{a} (j) \xrightarrow{c} (k)$, then $(i) \xrightarrow{a} (k)$.
- We start with finding the ϵ -closure of all states
 - ϵ -closure(q₀) = {q₀}
 - $\epsilon\text{-closure}(q_1) = \{q_1, q_2\}$
 - $\epsilon\text{-closure}(q_2) = \{q_2\}$
- For each incoming arc (q_i,q_j) with label ℓ to a node q_j
 - add a new arc (q_i,q_k) with label ℓ , for all
 - $q_k \in \varepsilon\text{-closure}(q_j)$
 - remove all ε transitions (q_j,q_k) for all $q_k \in \varepsilon\text{-closure}(q_j)$
- e-transitions from the initial state, and to/from the accepting states need further attention (next slide)

• Intuition: if
$$(i) \xrightarrow{a} (j) \xrightarrow{\epsilon} (k)$$
, then $(i) \xrightarrow{a} (k)$.

- We start with finding the ϵ -closure of all states
 - ϵ -closure(q₀) = {q₀}
 - $\epsilon\text{-closure}(q_1) = \{q_1, q_2\}$
 - $\epsilon\text{-closure}(q_2) = \{q_2\}$
- For each incoming arc (q_i,q_j) with label ℓ to a node q_j
 - add a new arc (q_i,q_k) with label $\ell,$ for all
 - $q_k \in \varepsilon\text{-closure}(q_j)$
 - $\begin{array}{l} \mbox{ remove all } \varepsilon \mbox{ transitions } (q_j,q_k) \mbox{ for all } \\ q_k \in \varepsilon\mbox{-closure}(q_j) \end{array}$
- e-transitions from the initial state, and to/from the accepting states need further attention (next slide)
- Remove useless states, if any

another (less trivial) example

- Compute the ε-closure:
 - ε -closure $(q_0) = \{q_0, q_1\}$
 - ϵ -closure(q₁) = {q₁}
 - $\ \varepsilon\text{-closure}(q_2) = \{q_2, q_3\}$
 - ϵ -closure(q₃) = {q₃, q₁}

another (less trivial) example

- Compute the ε-closure:
 - $\ \varepsilon\text{-closure}(q_0) = \{q_0, q_1\}$
 - ϵ -closure(q₁) = {q₁}
 - $\ \varepsilon\text{-closure}(q_2) = \{q_2, q_3\}$
 - $\epsilon\text{-closure}(q_3) = \{q_3, q_1\}$
- For each incoming arc $\ell(q_i,q_j)$ to each node q_j
 - $\text{ add } \ell(q_i,q_k) \text{ for all } q_k \in \varepsilon\text{-closure}(q_j)$
 - if q_i is initial, mark q_j initial
 - if q_j is accepting, mark q_i accepting
 - remove all $\varepsilon(q_j, q_k)$ for all $q_k \in \varepsilon$ -closure (q_j)

NFA–DFA equivalence

- The language recognized by every NFA is recognized by some DFA
- The set of DFA is a subset of the set of NFA (a DFA is also an NFA)
- The same is true for ϵ -NFA
- All recognize/generate regular languages
- NFA can automatically be converted to the equivalent DFA

Why do we use an NFA then?

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

Why do we use an NFA then?

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise

1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an a
Why do we use an NFA then?

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise

1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an a

Why do we use an NFA then?

- NFA (or ϵ -NFA) are often easier to construct
 - Intuitive for humans (cf. earlier exercise)
 - Some representations are easy to convert to NFA rather than DFA, e.g., regular expressions
- NFA may require less memory (fewer states)

A quick exercise – and a not-so-quick one

1. Construct (draw) an NFA for the language over $\Sigma = \{a, b\}$, such that 4th symbol from the end is an a

2. Construct a DFA for the same language

Summary

- FSA are efficient tools with many applications
- FSA have two flavors: DFA, NFA (or maybe three: ϵ -NFA)
- DFA recognition is linear, recognition with NFA may require exponential time
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

Next:

- FSA determinization, minimization
- Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive editions), Jurafsky and Martin (2009, Ch. 2)

Acknowledgments, credits, references

- Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata Theory, Languages, and Computation. Addison-Wesley Series in Computer Science and Information Processing. Addison-Wesley. ISBN: 9780201029888.
- Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition. second edition. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.