Çağrı Çöltekin ccoltekin@sfs.uni-tuebingen.de University of Tübingen $\label{eq:Winter}$ Winter Semester 2024/25 *•* Finite-state automata are efficient models of computation *•* There are many applications **–** Electronic circuit design **–** Workflow management **–** Games **–** Pattern matching **–** … But more importantly ;-) **–** Tokenization, stemming **–** Morphological analysis **–** Spell checking **–** Shallow parsing/chunking Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 1 / 30 Introduction Languages and automata DFA NFA Finite-state automata (FSA) A finite-state machine is in one of a finite-number of states in a given time
 Γ The machine changes its state based on its input
 Γ beery regular language is generated (recognized by an FSA
 Γ beery FSA generated in Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 30 Introduction Languages and automata DFA NFA FSA as a graph *•* An FSA is a directed graph *•* States are represented as nodes *•* Transitions are labeled edges *•* One of the states is the *initial state •* Some states are accepting states 0) 1) 2 P v a b initial state transition / state accepting state Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 30 Introduction Languages and automata DFA NFA Languages and automata *•* Recognizing strings from a language defined by a grammar is a fundamental question in computer science quastion in computer science
 $\label{eq:1} \textbf{The effective structure of the model, we can also be used to be a more than the same number of the data.$ A well-known horarizely of grammars been in computer science and linguage)
 $\textit{to} \in \mathbb{R}$. A well-known horarizely of grammars been in computer science Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 30 Introduction Languages and automata DFA NFA How to describe a language? Formal grammars A formal grammar is a finite specification of a (formal) language. We consider large
approximation of a finite specification of a finite language, we can be
considered by list all entrops only and property concerned by th Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 30 $\label{eq:1} \begin{minipage}[t]{0.9\textwidth} \begin{tabular}{p{0.8cm}} \textbf{P} \textbf{I} \textbf{$ which means that the sequence α
can be rewritten as β (both a and
 β are sequences of terminal and non-terminal symbols)
 $\label{eq:1}$ The strings in the language of the grammar is those that can be derived from S . Introduction Languages and automata DFA NFA Chomsky hierarchy and automata $\begin{array}{l|l} \multicolumn{3}{l}{{\mathbf{R}}\xspace} & \multicolumn{3}{l}{{\mathbf{A}}\xspace} & \multicolumn{3}{l}{\mathbf{A}}\xspace & \multicolumn{3}{l}{\textbf{A}}\xspace & \multicolumn{3}{l}{\textbf{A}}\x$ Context-sensitive grammars $\alpha \wedge \beta \rightarrow \alpha \gamma \beta$ Linear-bounded automata
Context-free grammars $\alpha \wedge \beta \rightarrow \alpha \gamma \beta$ Linear-bounded automata Unrestricted grammars ^α→^β Turing machines *Grammar class Rules Automata* Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 30 $\begin{minipage}{0.9\linewidth} \textbf{Regular grammars: definition} \\ \textbf{A regular grammar is a tuple G} = (\texttt{E}, \texttt{N}, \texttt{S}, \texttt{R}) \textbf{ where } \texttt{E} \textbf{ is an alphabet of terminal symbols} \\ \texttt{N} \textbf{ are a set of normal symbols} \\ \texttt{N} \textbf{ a special 'start' symbol } \in \texttt{N} \\ \texttt{S} \textbf{ is a special 'start' symbol } \in \texttt{N} \\ \end{minipage}$ ^R is a set of rewrite rules following one of the following patterns (A, ^B *[∈]* ^N, ^a *[∈]* ^Σ,^ϵ is the empty string) $\frac{\text{Left regular}}{\text{Left regular}}$

1. A → a

2. A → Ba

3. A → ε $\begin{aligned} &\text{Right regular} \\ &1. \ \ A \rightarrow a \\ &2. \ \ A \rightarrow a \\ &3. \ \ A \rightarrow e \end{aligned}$ Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 30 Introduction Languages and automata DFA NFA Regular languages: some properties/operations $\mathcal{L}_1\mathcal{L}_2$ Concadenation of two languages \mathcal{L}_1 and \mathcal{L}_2 any sentence of \mathcal{L}_1 followed by any sentence of \mathcal{L}_2 . Where set at $\mathcal{L}\mathcal{L}_2$ Concatenated with the
left 0 or more times $\mathcal{L}^{\mathcal{$. We
ster Semester $2024/25 = -9$ / 30 Three ways to define a regular language $\overline{}$ A language is regular if there is regular grammar that generates/recognizes it
A language is regular if there is an FSA that generates/recognizes it
+ A language is regular if we can define a regular expressions for the la $\begin{minipage}{0.9\linewidth} \textbf{DFA: formal definition} \end{minipage}$ Formally, a deterministic finite state automaton, M, is a tuple $(\mathbb{E},\mathbf{Q},\mathbf{q}_0,\mathbf{F},\Delta)$ with \mathbb{E} is the alphabet, a finite set of symbols \mathbf{Q} a finite set of states \mathbf{Q} is the start state, $\mathbf{q}_0\in$

 $\begin{aligned} \text{rate } (\Delta: Q \times L \rightarrow Q) \\ \text{At any state and for any input,} \\ \text{a DFA has a single well-defined action to take.} \end{aligned}$

Why study finite-state automata?

a

Finite state automata
and Algorithms for Computational (ISCL-BA-07)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 30

• What is the complexity of the algorithm? *•* How about inputs: **–** bbbb **–** aa

• What is the complexity of the algorithm? *•* How about inputs: **–** bbbb **–** aa

Note: the process is *deterministic*, and *finite-state*.

Note: the process is *deterministic*, and *finite-state*.

 $\label{eq:10} \text{Winter-Peroter ZCD}_c(\mathbb{R}) = \text{A.A}.$