
Finite state automata
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2024/25

version: c8d9876 @2025-01-08

Introduction Languages and automata DFA NFA

Why study finite-state automata?

• Finite-state automata are efficient models of computation
• There are many applications

– Electronic circuit design
– Workflow management
– Games
– Pattern matching
– …

But more importantly ;-)
– Tokenization, stemming
– Morphological analysis
– Spell checking
– Shallow parsing/chunking
– …

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 1 / 30

Introduction Languages and automata DFA NFA

Finite-state automata (FSA)

• A finite-state machine is in one of a finite-number of states in a given time
• The machine changes its state based on its input
• Every regular language is generated/recognized by an FSA
• Every FSA generates/recognizes a regular language
• Two flavors:

– Deterministic finite automata (DFA)
– Non-deterministic finite automata (NFA)

Note: the NFA is a superset of DFA.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 30

Introduction Languages and automata DFA NFA

FSA as a graph

• An FSA is a directed graph
• States are represented as nodes
• Transitions are labeled edges
• One of the states is the initial state
• Some states are accepting states

0

1

2

b

a

b

a

initial state

transition

state

accepting state

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 30

Introduction Languages and automata DFA NFA

Languages and automata

• Recognizing strings from a language defined by a grammar is a fundamental
question in computer science

• The efficiency of computation, and required properties of computing device
depends on the grammar (and the language)

• A well-known hierarchy of grammars both in computer science and
linguistics is the Chomsky hierarchy

• Each grammar in the Chomsky hierarchy corresponds to an abstract
computing device (an automaton)

• The class of regular grammars are the class that corresponds to finite state
automata

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 30

Introduction Languages and automata DFA NFA

How to describe a language?
Formal grammars

A formal grammar is a finite specification of a (formal) language.
• We consider languages as sets of strings, for a finite language, we can

(conceivably) list all strings
• How to define an infinite language?

– Is the definition {ba,baa,baaa,baaaa, . . .} ‘formal enough’?
– Using regular expressions, we can define it as baa∗

– We will introduce a more general method for defining languages

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 30

Introduction Languages and automata DFA NFA

Phrase structure grammars
• A phrase structure grammar is a generative device
• If a given string can be generated by the grammar, the string is in the language
• The grammar generates all and the only strings that are valid in the language
• A phrase structure grammar has the following components

Σ A set of terminal symbols
N A set of non-terminal symbols

S ∈ N A special non-terminal, called the start symbol
R A set of rewrite rules or production rules of the form:

α → β

which means that the sequence α can be rewritten as β (both α and β are
sequences of terminal and non-terminal symbols)

• The strings in the language of the grammar is those that can be derived from S
using the rewrite operations

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 30

Introduction Languages and automata DFA NFA

Chomsky hierarchy and automata

Regular grammars Finite state automataA→a A→a
A→aB A→B a

Context-free grammars Pushdown automataA→α

Context-sensitive grammars Linear-bounded automataα A β→α γ β

Unrestricted grammars Turing machinesα→β

Grammar class AutomataRules

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 30

Introduction Languages and automata DFA NFA

Regular grammars: definition
A regular grammar is a tuple G = (Σ,N, S,R) where
Σ is an alphabet of terminal symbols
N are a set of non-terminal symbols
S is a special ‘start’ symbol ∈ N

R is a set of rewrite rules following one of the following patterns (A,B ∈ N,
a ∈ Σ, ϵ is the empty string)

Left regular

1. A → a

2. A → Ba

3. A → ϵ

Right regular

1. A → a

2. A → aB

3. A → ϵ

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 30

Introduction Languages and automata DFA NFA

Regular languages: some properties/operations

L1L2 Concatenation of two languages L1 and L2: any sentence of L1 followed by
any sentence of L2

L∗ Kleene star of L: L concatenated with itself 0 or more times
LR Reverse of L: reverse of any string in L

L Complement of L: all strings in Σ∗
L except the ones in L (Σ∗

L − L)
L1 ∪ L2 Union of languages L1 and L2: strings that are in any of the languages
L1 ∩ L2 Intersection of languages L1 and L2: strings that are in both languages

Regular languages are closed under all of these operations.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 30

Introduction Languages and automata DFA NFA

Three ways to define a regular language

• A language is regular if there is regular grammar that generates/recognizes it
• A language is regular if there is an FSA that generates/recognizes it
• A language is regular if we can define a regular expressions for the language

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 30

Introduction Languages and automata DFA NFA

DFA: formal definition

Formally, a deterministic finite state automaton, M, is a tuple (Σ,Q,q0, F,∆) with
Σ is the alphabet, a finite set of symbols
Q a finite set of states
q0 is the start state, q0 ∈ Q

F is the set of final states, F ⊆ Q

∆ is a function that takes a state and a symbol in the alphabet, and returns
another state (∆ : Q× Σ → Q)

At any state and for any input,
a DFA has a single well-defined action to take.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 30

Introduction Languages and automata DFA NFA

DFA: formal definition
an example

Σ = {a,b}

Q = {q0,q1,q2}

q0 = q0

F = {q2}

∆ = {(q0,a) → q2, (q0,b) → q1,
(q1,a) → q2, (q1,b) → q1}

0

1

2

b

a

b

a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 30

Introduction Languages and automata DFA NFA

Another note on DFA
error or sink state

• Is this FSA deterministic?
• To make all transitions well-defined,

we can add a sink (or error) state
• For brevity, we skip the explicit error

state
– In that case, when we reach a dead

end, recognition fails

0

1

2

3

a,b

a,b

b

a

b

a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 13 / 30

Introduction Languages and automata DFA NFA

DFA: the transition table

transition table

symbol
a b→0 2 1

sta
te 1 2 1

*2 ∅ ∅

3 3 3

→ marks the start state
* marks the accepting state(s)

0

1

2

b

a

b

a3

a,b

a,b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 14 / 30

Introduction Languages and automata DFA NFA

DFA: the transition table

transition table

symbol
a b→0 2 1

sta
te 1 2 1

*2 3 3
3 3 3

→ marks the start state
* marks the accepting state(s)

0

1

2

b

a

b

a3

a,b

a,b

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 14 / 30

Introduction Languages and automata DFA NFA

DFA recognition
1. Start at q0

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of
the input

• What is the complexity of the
algorithm?

• How about inputs:
– bbbb
– aa

0

1

2

b

a

b

a

Input: b b a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 30

Introduction Languages and automata DFA NFA

DFA recognition
1. Start at q0

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of
the input

• What is the complexity of the
algorithm?

• How about inputs:
– bbbb
– aa

0

1

2

b

a

b

a

Input: b b a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 30

Introduction Languages and automata DFA NFA

DFA recognition
1. Start at q0

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of
the input

• What is the complexity of the
algorithm?

• How about inputs:
– bbbb
– aa

0

1

2

b

a

b

a

Input: b b a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 30

Introduction Languages and automata DFA NFA

DFA recognition
1. Start at q0

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of
the input

• What is the complexity of the
algorithm?

• How about inputs:
– bbbb
– aa

0

1

2

b

a

b

a

Input: b b a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 30

Introduction Languages and automata DFA NFA

DFA recognition
1. Start at q0

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of
the input

• What is the complexity of the
algorithm?

• How about inputs:
– bbbb
– aa

0

1

2

b

a

b

a

Input: b b a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 30

Introduction Languages and automata DFA NFA

DFA recognition
1. Start at q0

2. Process an input symbol, move
accordingly

3. Accept if in a final state at the end of
the input

• What is the complexity of the
algorithm?

• How about inputs:
– bbbb
– aa

0

1

2

b

a

b

a

Input: b b a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 30

Introduction Languages and automata DFA NFA

A few questions

• What is the language recognized by
this FSA?

• Can you draw a simpler DFA for the
same language?

• Draw a DFA recognizing strings
with even number of ‘a’s over
Σ = {a,b}

0

1

2

b

a

b

a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 30

Introduction Languages and automata DFA NFA

Non-deterministic finite automata
Formal definition

A non-deterministic finite state automaton, M, is a tuple (Σ,Q,q0, F,∆) with
Σ is the alphabet, a finite set of symbols
Q a finite set of states
q0 is the start state, q0 ∈ Q

F is the set of final states, F ⊆ Q

∆ is a function from (Q,Σ) to P(Q), power set of Q (∆ : Q× Σ → P(Q))

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 30

Introduction Languages and automata DFA NFA

An example NFA

0

1

2

a,b a,b

a,b

a

a

a,b

transition table

symbol
a b→0 0,1 0,1

sta
te 1 1,2 1

*2 0,2 0

• We have nondeterminism, e.g., if the first input is a, we need to choose
between states 0 or 1

• Transition table cells have sets of states

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 18 / 30

Introduction Languages and automata DFA NFA

Dealing with non-determinism

• Follow one of the links, store alternatives, and backtrack on failure
• Follow all options in parallel

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 19 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda

1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q0, 1)

(q1, 1) 1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q0, 1)

(q1, 1) 1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q0, 2)

(q1, 2)

(q1, 1)

1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q0, 2)

(q1, 2)

(q1, 1)

1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q0, 3)

(q1, 3)

(q1, 2)

(q1, 1)

1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q0, 3)

(q1, 3)

(q1, 2)

(q1, 1)

1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q1, 3)

(q1, 2)

(q1, 1)

1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q1, 3)

(q1, 2)

(q1, 1)

1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q1, 2)

(q1, 1) 1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q1, 2)

(q1, 1) 1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q2, 3)

(q1, 3)

(q1, 1)

1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q2, 3)

(q1, 3)

(q1, 1)

1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition
as search (with backtracking)

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a

Agenda
(q1, 3)

(q1, 1) 1. Start at q0

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4. At the end of input
Accept if in an accepting state
Reject not in accepting state & agenda

empty
Backtrack otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 20 / 30

Introduction Languages and automata DFA NFA

NFA recognition as search
summary

• Worst time complexity is exponential
– Complexity is worse if we want to enumerate all derivations

• We used a stack as agenda, performing a depth-first search
• A queue would result in breadth-first search
• If we have a reasonable heuristic A* search may be an option
• Machine learning methods may also guide finding a fast or the best solution

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 21 / 30

Introduction Languages and automata DFA NFA

NFA recognition
parallel version

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a b

1. Start at q0

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

Note: the process is deterministic, and
finite-state.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 30

Introduction Languages and automata DFA NFA

NFA recognition
parallel version

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a b

1. Start at q0

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

Note: the process is deterministic, and
finite-state.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 30

Introduction Languages and automata DFA NFA

NFA recognition
parallel version

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a b

1. Start at q0

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

Note: the process is deterministic, and
finite-state.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 30

Introduction Languages and automata DFA NFA

NFA recognition
parallel version

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a b

1. Start at q0

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

Note: the process is deterministic, and
finite-state.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 30

Introduction Languages and automata DFA NFA

NFA recognition
parallel version

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a b

1. Start at q0

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

Note: the process is deterministic, and
finite-state.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 30

Introduction Languages and automata DFA NFA

NFA recognition
parallel version

0

1

2

a,b a,b

a,b

a

a

a,b

Input: a b a b

1. Start at q0

2. Take the next input, mark all possible
next states

3. If an accepting state is marked at the end
of the input, accept

Note: the process is deterministic, and
finite-state.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 22 / 30

Introduction Languages and automata DFA NFA

An exercise
Construct an NFA and a DFA for the language over Σ = {a,b} where all sen-
tences end with ab.

NFA: 0 1 2

a,b

a b

DFA: 0 1 2

b

a

a

b

a

b
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 23 / 30

Introduction Languages and automata DFA NFA

One more complication: ϵ transitions
• An extension of NFA, ϵ-NFA, allows moving without consuming an input

symbol, indicated by an ϵ-transition (sometimes called a λ-transition)
• Any ϵ-NFA can be converted to an NFA

0

1

2

a

b

ϵ

a

0

1

2

a

a b

b

a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 24 / 30

Introduction Languages and automata DFA NFA

ϵ-transitions need attention

0 1 2

3

4

b

a a

b,ϵϵ

a

b

• How does the (depth-first) NFA recognition algorithm we described earlier
work on this automaton?

• Can we do without ϵ transitions?

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 25 / 30

Introduction Languages and automata DFA NFA

ϵ removal

• Intuition: if i j ka ϵ

, then i ka
.

• We start with finding the ϵ-closure of all states
– ϵ-closure(q0) = {q0}

– ϵ-closure(q1) = {q1,q2}

– ϵ-closure(q2) = {q2}

• For each incoming arc (qi,qj) with label ℓ to a node qj

– add a new arc (qi,qk) with label ℓ, for all
qk ∈ ϵ-closure(qj)

– remove all ϵ transitions (qj,qk) for all
qk ∈ ϵ-closure(qj)

• ϵ-transitions from the initial state, and to/from the
accepting states need further attention (next slide)

• Remove useless states, if any

0

1

2

a

b

ϵ

a

a

a

bϵ

b

a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 26 / 30

Introduction Languages and automata DFA NFA

ϵ removal
another (less trivial) example

• Compute the ϵ-closure:
– ϵ-closure(q0) = {q0,q1}

– ϵ-closure(q1) = {q1}

– ϵ-closure(q2) = {q2,q3}

– ϵ-closure(q3) = {q3,q1}

• For each incoming arc ℓ(qi,qj) to each node qj

– add ℓ(qi,qk) for all qk ∈ ϵ-closure(qj)
– if qi is initial, mark qj initial
– if qj is accepting, mark qi accepting
– remove all ϵ(qj,qk) for all qk ∈ ϵ-closure(qj)

0 1

2 3

a

ϵ

b

ϵ

a

b
ϵ

a

a

b

a

a a

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 27 / 30

Introduction Languages and automata DFA NFA

NFA–DFA equivalence

• The language recognized by every NFA is recognized by some DFA
• The set of DFA is a subset of the set of NFA (a DFA is also an NFA)
• The same is true for ϵ-NFA
• All recognize/generate regular languages
• NFA can automatically be converted to the equivalent DFA

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 28 / 30

Introduction Languages and automata DFA NFA

Why do we use an NFA then?
• NFA (or ϵ-NFA) are often easier to construct

– Intuitive for humans (cf. earlier exercise)
– Some representations are easy to convert to NFA rather than DFA, e.g., regular

expressions
• NFA may require less memory (fewer states)
A quick exercise – and a not-so-quick one

1. Construct (draw) an NFA for the language over Σ = {a,b}, such that 4th
symbol from the end is an a

0 1 2 3 4

a,b
a a,b a,b a,b

2. Construct a DFA for the same language

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 29 / 30

Introduction Languages and automata DFA NFA

Summary

• FSA are efficient tools with many applications
• FSA have two flavors: DFA, NFA (or maybe three: ε-NFA)
• DFA recognition is linear, recognition with NFA may require exponential time
• Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive

editions), Jurafsky and Martin (2009, Ch. 2)
Next:

• FSA determinization, minimization
• Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive

editions), Jurafsky and Martin (2009, Ch. 2)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 30 / 30

Acknowledgments, credits, references

Hopcroft, John E. and Jeffrey D. Ullman (1979). Introduction to Automata Theory,
Languages, and Computation. Addison-Wesley Series in Computer Science and
Information Processing. Addison-Wesley. ISBN: 9780201029888.
Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. second edition. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.1

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.2

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.3

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.4

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.5

	Finite state automata
	Introduction
	Why study finite-state automata?
	Finite-state automata (FSA)
	FSA as a graph

	Languages and automata
	Languages and automata
	How to describe a language?
	Phrase structure grammars
	Chomsky hierarchy and automata
	Regular grammars: definition
	Regular languages: some properties/operations
	Three ways to define a regular language

	Deterministic finite automata
	DFA: formal definition
	DFA: formal definition
	Another note on DFA
	DFA: the transition table
	DFA: the transition table
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	A few questions

	Non-deterministic finite automata
	Non-deterministic finite automata
	An example NFA
	Dealing with non-determinism
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition as search
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	An exercise
	One more complication: transitions
	-transitions need attention
	 removal
	 removal
	NFA–DFA equivalence
	Why do we use an NFA then?

	
	Summary

	Appendix
	Acknowledgments, credits, references

