Why study finite-state automata?
Finite state automata ’

Data Structures and Algorithms for Computational Linguistics IIl
a 7)

« There are many applications
~ Electronic ircuit design

. - Workflow management
Gagn Galtekin s “
ceoltekindsts. uni-tuebingen. do = Pattern matching
Uriversty of Tabinge But more importantly ;-)

Seninar o Sprachisenscatt.
" - Tokenization, stemming

 Morphlogialanalysis
Winter Semester 202425 - Vorphalogie
 Shallow parsing/chunking
Finite-state automata (FSA) FSA as a graph
oA in one of a finte- ina given time

+ The machine changes its state based on s input
« Every regular language is generated!/recognized by an FSA A
+ Every FSA generates/recognizes a regular language + States are represented as nodes
+ Two flavors + Transitions ae Iabeled edges
~ Deterministi e sutomat (DFA) « One of the statesis the iniial state
= Nodetermintic it automata (NFA) i e
Note: the NFA is a superset of DFA.

+ AnFSA isa directed graph

accepting state

Languages and automata How to describe a language?
Formal grammars
+ Recognizing strings from a language defined by a grammaris a fundamental
question in computer science
+ The effcienc Aformal grammar is a inite specification of (formal) language.
e e S . We strings, for a , we can
+ A well-known hierarchy of grammars both in computer sience and (conceivably) lstall stings
linguistics is the Chomsky rmmhy « How to define an infinite language?
« Each grammar in the Chomsky hierarchy corresponds to an abstract o ‘T.’:‘;i‘;:‘“‘"; -bas baca bages,..) formal ncught?
e) N e mere et deing s
1o finite state
automata
Phrase structure grammars Chomsky hierarchy and automata
« A phrase structure grammar is generative device
ted by th h the language Grammar class Rales Autonata
ettt e e S o o e e Unrestrcted grammars ap Taring machines
T e Contextsensitive grammars a Apayp Linearbounded automata
N A set of nor-termina symbo
N A el m s e thestr sy Contextfres grammars Ao Tushdown automata
R A s of rerite e o poduction s ofthefor:
& B Regular grammars. Aoa | A Finite state automata
A—aB | A-Ba
which meanstha th sequence can be rewriten s (b and are
sequences ofterminal and norterminal symbols)
+ Thest f
using the rewrite operations
Regular grammars: definition Regular languages: some properties/operations
A regular grammar is a tuple G = (£, N, S, R) where
s an alphabet of terminal symbols 2 £y and £3: any's £ followed by
N are a set of non-terminal symbols any sentence of £
S is m special ‘sart” symbol €N Kleene star of £: £ concatenated with tself 0 or more times

R isa set of rewrite rulesfollowing one of the following patterns (A, € N, * Reverse of £: reverse ofany string in £
a &, el the empty string Complement of £: all trings in £3, excopt the ones i £ (53 — £)

£1U£, Union of languages £ and £5: strings that are in any of the languages

o el | [Figh gl i e T e AV e TR
LA-e LAoa
A S awn Regular languages are closed under all of these operations.
5 Aae A
Three ways to define a regular language DFA: formal definition
Formally, a deterministic finite state automaton, M, is a tuple (£, Q. do, F. A) with
I s the alphabet, afiniteset of symbols
Q afinite set of states
.a - ao 1sthestatstate, qo € Q
A FSA T is the set of hn«l states, F C Q
‘A can define language 4 152 function that tak A symmbol i the alphabet and et
anothersate (A: Q x T -+ Q)
 any stae and for any &
2 DEA ha gl elldfined achon o ake

DFA: formal definition

242, (qo,b)
(ane) = az (ab) = a)

Another note on DFA

+ Isthis FSA deterministic?

+ To make all transitions well-defined,
we can add a sink (or error) state

« For brevity, we skip the explicit error
state

- In that case, when we reach a dead
end, recognition fails

DFA: the transition table

state

20 o

— marks the start state
* marks the accepting state(s)

DFA: the transition table

02 1
$ 12 1
F 23 3
35 3

— marks the start state
* marks the accepting state(s)

DFA recognition

1. Startat qo

2. Process an input symbol, move
accordingly

3. Acceptif in a final state at the end of
the input

Input

DFA recognition
1. Startat g0
2. Process an input symbol, move
accordingly
3. Acceptifin afinal sate at the end of
the

DFA recognition
1 Sartat gy
2. Process an input symbol, move
accordingly
3. Acceptif n a final state at the end of
the input

DFA recognition
1. Startat g0
2. Process an input symbol, move
accondingly
Acceptifin a finalstate at the end of
the input

DFA recognition

1. Strtat go

2. Process an input symbol, move
accordingly

3. Acceptifin a final state at the end of
the input

DFA recognition
1 Startat qo
2. Process an input symbol, move
accordingly
Accept if in a final state at the end of
the input

« Whatis the complexity of the
algorithm?
« How about inputs:
ey

Input:

A few questions

+ What is the language recognized by
is FSA?

+ Can you draw a simpler DFA for the
same language?

+ Draw a DFA recognizing strings.
with even number of ‘a’s over

I=(ab]

Non-deterministic finite automata
Formal definition

A non-deterministic finite state automaton, M, is a tuple (£, Q. do. F, 4] with
£ is the alphabet, finite set of symbols

Q afinite set of states

qo s the start state, o € Q
F s the set of final states, F
A isa function from (Q.£) to P(

), power setof Q (A: Q x £ - P(Q))

An example NFA

« We have nondeterminism, e.g. if the first input is a, we need to choose.
between states 0 or 1
« Transition table cells have sefs of states.

Dealing with non-determinism

+ Follow one of the links, store alternatives, and backtrack on failure
« Follow all options in parallel

NFA recognition NFA recognition
st (whlh eckocking) s ssrch (i becrcing)
1. Startat g 1 Sartat o
2. Take the next nput, place all 2 Tkethe nestnput, place al
possble actions toan agenda possible actons toan agenda
Get the next action from the agenda, 3. Get the next action from the agenda,
act at
4. Attheend of nput 5. Atthe end of input
Accpt I an aceptng stte Accpt i an accepting sate
Reec ot mseceping ot e agena Reect not i acceping sate & genc
empty al mpty
Backirack ofhorvie Backtrack oherwioe
inpusa[b]a]
NFA recognition NFA recognition
s earch (vt Cckracking) asarch (it acrocing)
1. Startatao 1. Sartat o
2 Take the next nput,place all 2. Take the next input, place all
possble actions toan agenda possible actons toan agenda
3. Get the next action from the agenda, 3. Get the next ction from the agenda,
act
4. Atthe end of input 4. Atthe end of nput
Accept I nan acoeptng sate Acept fnan acceptng state
Reeet o inaceeping e & agenla Reft ot inaccepuing date e agenca
ey cpty
Backiack therise Backtrck oherwise
input[a [oa]
NFA recognition NFA recognition
s search (i Bckracking) e (it ckimcin
L. Strtat o 1 Startat o
2. Take thenext npu, place all 2. Take the next input, place all
possible actions toan agenda possible actons toan agenda
3. Get the next action from the agenda, 3. Gt the next acton from the agenda,
act act
4. Atthe end of mput 4. Atthe end of mput
Accept fnan acceptng st Accept i an acceping sate
Reket o inaceeping st & agenla Refst not naeveping sae & agenda
empty empty
Backiack otherwise Backtrck oerwise
nput; ﬂllﬂ input[aTb]a]
NFA recognition NFA recognition
ab ab
L Startat g 1. Startatqo
2. Take the next nput, placeall 2. Take the next input, place all
posible actions to an agenda possible actons toan agenda
3. Get the next action from the agenda, 3. Get the next ction from the agenda,
act
4. Attheend of mput 4. Atthe end of input
Accep ifin an accepting state Accept 1 an accepting
Reet Rk Inacceping st & agena R i g e g
empty
Backiack otherwise | Backirck oherwise
nput:
NFA recognition NFA recognition
1 Startatq 1. Startat g
2. Take the next nput, placeall 2. Take the next input, place all
posible actions to ah agend possible actons toan agenda
3. Get the next action from the agenda, 3. Gt the next acton from the agenda,
act
4. Atthe end of nput 4. Atthe end of nput
Acept ifnam accpting s Accept itinan acepting state
R g e c genda Rejet ot inaccepung sate e agenca
enp
| Backiack atpenwise Backirck otherwise
e

NFA recognition

assearch (with backtracking)

1. Surtat go
2. Take the next input, place all
possible actions to an agenda

4. Atthe end of input
Accept ifin an accepting stat
Reject notin accepting sate & agenda
empty

Backtrack otherwise

tmput[3 o 3]

3. Get the next action from the agenda,
act

NFA recognition

a8 search (with backiracking)

put (a6]

1. Srtatgo

2. Take the next input, place all
possible actions to an agenda

3. Get the next action from the agenda,
act

4 Atthe end of input

Accept ifin an accepting state

Reject notin accepting state & agenda
empty

y
Backtrack otherwise

NFA recognition NFA recognition
s sereh (it uckracking) o sarch (with backracking)
ap ab
1 Sartat as
ap ab 2. Take the next input, place all ab ab
possible actons to an g
3. Get the next action from the agenda,
p act -
a2 4. Atthe end of input o

Accept ifin an accepting state
Reject not in accepting sate & agenda

empty
Backtrack otherwise.

1. Startat g

2. Take the nextinput, place all
possible actions to an agenda

3. Getthe next action from the agenda,
act

4 Atthe end of input

Accept

Reject

ifin an accepting state
ot in accepingdate & agenda

mpty.
Backirack otherwise

NFA recognition as search NFA recognition
cummary panilel veson
1. Startatqo
2. Take the next input, markall possible
+ Worsttime complexity is exponential nextstates
~ Complexiy s worse if we want o enumerae alldervations 3. 1 an accepting state fs marked a the end
+ We used a stack as agends, performing a depth-first search of the input,accept
+ A queue would resultin breadth-frst search
+ Ifwe have a reasonable heuristc A* search may be an option
+ Machine also fastor
NFA recognition NFA recognition
paalel verson panlel vesion
1 Surtatqy 1 Startatqo
2. Take the next input, mark all possible 2. Take the next input, markall possible
nextstates tstat

If an accepting state is marked at the end
of the input, accept

1 an accepting state is marked at the end
of the input, accept

NFA recognition NFA recognition
paale verson panlel vesion
1. Startat 4o 1. Startat qo
2. Take the next input, mark all possible 2. Take the next input, markall possible
next states next states
B

If an accepting state is marked at the end
of the input, accept

put (35 [a]p]

1 an accepting state is marked at the end
of the input, accept

NFA recognition
paale verson
1 Surtat g
2. Take the next input, mark all possible
nextstates

If an accepting state is marked at the end
of the input, accept

Note: the process is deterministic, and
finite:state.

input:[a[b]a]b]

An exercise

Constrcta NEA an DFA for the
tences end with

nguage over L

@, b} where all sen-

ab

0
-
:

One more complication: € transitions e-transitions need attention

symbol, indicated by an e-transition (sometimes called a A-transition)
+ Any c-NFA can be converted to an NFA

* How doe the (depfrst) NFA recognition lgorithm e described clir
work on this automator
B

€ removal € removal

anothr (s i) example
« tntuition: it O~~D-=®, then O,

+ We startwith finding the e-closre ofal states
losure(qo)

b
0 + Compute the e-closure:
1

~ e-closure(an) o
+ For cach incoming arc (41) with label ¢ 02 node g
- adda new e g, qu) withlabel § forall b

+ For each incoming ar {[q,,) o each node
—{2 ~ add q,) foral g € e-closure(a)
= lau s il mark g il
i oy i accaiing, matk g acoptio
~ removeallc(a.av) for il g, © € losure(y)

. < eclosurelq))
- temove all ¢ transitions (q;,) for all
4 & eclosure(q;)
+ e-transitions from the initial state, and to/ from the
accepting states need further attention (next slide)
+ Remove useless states, if any

NFA-DFA equivalence Why do we use an NFA then?
« NFA (or ¢-NFA) are often easier to construct
~ Intuitive for humans (cf. earler exercise)

her than DF I
"~ expressions

« The language recognized by every NFA s recognized by some DFA « NFA may require less memory (fewer states)

« The set of DFA s a subset of the set of NFA (a DFA is also an NFA) A quick exercise ~ and & not-se-quick one |

« The same i true for e-NFA !

S 1. Construct (draw) an NFA for the language over £ = {a, b}, such that dth

symbol from the end is an @
« NFA can automatically be converted to the equivalent DFA

ab

g O EEEE

2. Construct a DFA for the same language

Summary Acknowledgments, credits, references

+ FSA arecfcent tools with many applications

+ FSA have two flavors: DFA, NFA (or maybe three: - NFA)

© B A s e D A P T IR B HoperoftJon . and ey D. Ullan (1579, nrducion o tomata ey

+ Reading suggestion: Hoperot and Ullman (1979, Ch, 263) (and s succesive g i Conpton. Addson ey Secs n Comptcr S
ditions), Jurafaky and Martn (2009, Ch.2) Iniormaton Procesang, Addison-Wesley. oy 3780201

Next [Jurafsky, Daniel and James H. Martin (2009). pﬂ'dznndlanx‘mgc Processing: An

+ FSA determinization, minimization I o g rsing, Conptan g, S

« Reading suggestion: Hopcroft and Ullman (1979, Ch. 2&3) (and its successive Recognition. second edition. Pearson Prentice Hall.ssu: 975- 3
editions), Jurafsky and Martin (2009, Ch. 2)

	Finite state automata
	Introduction
	Why study finite-state automata?
	Finite-state automata (FSA)
	FSA as a graph

	Languages and automata
	Languages and automata
	How to describe a language?
	Phrase structure grammars
	Chomsky hierarchy and automata
	Regular grammars: definition
	Regular languages: some properties/operations
	Three ways to define a regular language

	Deterministic finite automata
	DFA: formal definition
	DFA: formal definition
	Another note on DFA
	DFA: the transition table
	DFA: the transition table
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	DFA recognition
	A few questions

	Non-deterministic finite automata
	Non-deterministic finite automata
	An example NFA
	Dealing with non-determinism
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition as search
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	NFA recognition
	An exercise
	One more complication: transitions
	-transitions need attention
	 removal
	 removal
	NFA–DFA equivalence
	Why do we use an NFA then?

	
	Summary

	Appendix
	Acknowledgments, credits, references

