String edit distance

Data Structures and Algorithms for Computational Linguistics III
(ISCL-BA-07)

Cagr1 Coltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tiibingen
Seminar fiir Sprachwissenschaft

Winter Semester 2024/25

Introduction/motivation

Edit distance

 In many applications, we want to know how similar (or different) two string
are

Comparing two files (e.g., source code)
Comparing two DNA sequences

Spell checking

— Approximate string matching
Determining similarity of two languages
Machine translation

o The solution is typically formulated as the (inverse) cost of obtaining one of
the strings from the other through a number of edit operations

e Once we obtain the optimal edit operations, we may (depending on the edit
operations) also be able to determine the optimal alignment between the
strings

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 1/19

Introduction/motivation Longest common subsequence Levenshtein distance

Hamming distance

a simple distance metric between two sequences

o The Hamming distance measures number of different symbols in the

corresponding positions

s

glile

n e

hlyle

i|e|n

e |

h |

glile

n e

iy

g |e |i

n |

0+1+0+0+0+0+0=1

o Very easy/efficient calculation

0+1+1+1+0+1+1=5

« But cannot handle sequences of different lengths (consider hygene — hiygeine)

C. Coltekin, SfS / University of Tiibingen

Winter Semester 2024/25

2/19

Introduction/motivation [ongest common \ulv\m\urnw Levenshtein distance

A family of edit distance problems

o The same overall idea applies to a number of well-known problems/solutions
that differ in the type of operations allowed
— Hamming distance: only replacements
Longest common subsequence (LCS): insertions and deletions
Levenshtein distance insertions, deletions and substitutions
Levenshtein-Damerau distance insertions, deletions and substitutions and
transpositions (swap) of adjacent symbols

« Naive solutions to all (except Hamming distance) have exponential time
complexity

« Polynomial-time solution can be obtained using dynamic programming

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 3/19

Introduction/motivation Longest common subsequence Levenshtein distance

Longest common subsequence (LCS)

Problem definition

o A subsequence is an order-preserving (but not necessarily contiguous)
sequence of symbols from a string (a version of the sequence where zero or
more elements are removed)

- hyg, gn, yene, hen, gene are subsequences of hygiene
 Note that a subsequence does not have to be a substring (substrings are
contiguous)
- hyg, giene, ene are substrings of hygiene
o The LCS of two strings is the longest string that is a subsequence of both
strings
— LCS(hygiene, hiygien) = hygien
— LCS(hygiene, hygeine) = hygine / hygene
o LCS s exactly the problem solved by the UNIX diff utility

o It has wide-ranging applications from source-code comparison to
bioinformatics (e.g., DNA sequencing)

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25

4/19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS: a naive solution

A simple solution is:
1. Enumerate all subsequences of the first string
2. Check if it is also a subsequence of the second string

o There are exponential number of subsequences of a string
— the string abc has 8 subsequences:

abc: nothing removed

ab, ac, be: individual elements are removed
a, b, c: length-2 subsequences are removed
€ (empty string): abc removed

— For abcd, we have subsequences of abc once with, and once without d
- Each additional symbol doubles the number of subsequences

o For strings of size n and m, the complexity of the brute-force algorithm is
0O(2"m)

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25

5/19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS: recursive definition

o Consider two strings Xx, Yy and their LCS Zz (X, Y, Z are possibly empty
strings, x, y, z are characters)

o If x =y, then this character has to be part of the LCS, x =y = z, and Z must
be the LCS of X and Y

o If x # y, there are three cases
- x #Y # z: Zzis also the LCS of X and Y
- x =z: Zzis also the LCS of Xx and Y
- y =2z: Zzis also the LCS of X and Yy

o This leads to following recursive definition:

LCS(X,Y)x if x =y

LCS(Xx, Yy) = i
longer of LCS(Xx,Y) and LCS(X, Yy) otherwise

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25

6/19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS: divide-and-conquer

ab-ab i a-a - e-e
abc-ab - ab-a — a-a - e-e
- ade-abeC —_ ... / abc_a -

abcde-abec e abc-e
abcde-abe — abcd-ab

bea — a
\ . ___ab-a a-a — €-€
abc-a __

/
abcd-a abc-e
abcd-e

o Note the repeated computation

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 7 /19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS: dynamic programming

general sketch

o To calculate LCS(X i, Y;j), the LCS of string X up to index i, and the LCS of
string Y up to index j, we (may) need
- LCS(X:i—1,Y-1)
- LCS(X.i—1,Y3)
- LCS(Xi, Y1)
« If we store the above three values, we need only i x j operations
o In the standard dynamic programming algorithm, we store the length of the
LCS, in a matrix {, where {; j is the length of the LCS(X.,Y;)
e Once we fill in the matrix, the £, 1 is the length of the LCS
o We can trace back and recover the LCS using the dynamic programming
matrix

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25

8/19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS with dynamic programming

demonstration

0 1 2 4 5 6 8
€ h i y g e i n e

0 €

1 h

2 |y

318

4 i

5 e

6 n

7 e

. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 9/19
y g

Introduction/motivation Longest common subsequence Levenshtein distance

LCS with dynamic programming

demonstration

(@)
(o)

[
=

ol (O ST IS =l (O

N O O b WO N —m O

[} Nl Bl Nel Nl Nel Nell el o)
el Bl el Bl Y il Bl =) =l IS
NIN[NIDN| R~ O

NINININ[NIN| RO | W
W W] W W[W N~ |
R (R WL ROl | O
R WIN] RO

QIO | == WIN]R]IO]IB |
NG| U] WIN|—~=|O|@ | ©

(CH =1 ¢}

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25 9/19

Introduction/motivation Longest common subsequence Levenshtein distance

Complexity of filling the LCS matrix

1 = np.zeros(shape=(n + 1,m + 1))
for i in range(n):
for j in range(m):
if X[i] == Y[j]:
1Ii+1, j+11=1[0[H, j1+1
else:
1[i + 1, j + 1] = max(1[i, j + 11, 1[i +1, jD)

 Two loops up to n and m, the time complexity is O(nm)
o Similarly, the space complexity is also O(nm)

. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25
y g

10 /19

Introduction/motivation Longest common subsequence Levenshtein distance

Recovering the LCS from the matrix

N O O & WO N+, O

o 1 2 3 4 5 6 7 8
e | h|i|y|g]|le]|]i]|n]|e
e |0 O] O0O]O0O]O0O]O0O|O0}|O0]O
h {0 |11 (1|1 1|1 }1]1
y [O] 1T |1 |22 |2]2]|2]2
g |0 | T |1]2 [3«33]3]|3
|
10| 1] 2] 2|33 |4]4]4
|
e | 0| 1 | 2|2 |3 | 4«4 4|5
n |0 |1]2 |23 |4] 4|55
e | 0| 1 |2 |2 |3 4] 4]5]%

C. Coltekin, SfS / University of Tiibingen

Winter Semester 2024 /25

11/19

Introduction/motivation Longest common subsequence Levenshtein distance

Transforming one string to another

The table (back arrows) also gives a set of edit operations to transform one
string to another
For LCS, operations are:

- copy (diagonal arrows in the demonstration)
— insert (left arrows in the demo — assuming original string is the vertical one)
— delete (up arrows in the demo)

These also form an alignment between two strings

Different set of edit operations recovered will yield the same LCS, but
different alignments

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 12 /19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS alignments
0 1 2 3 4 5 6 7 8
e | h|i|y|g]|le]|]i|n]|e
0 € 0 0 0 0 0 0 0 0 0 Alignments:
1| h|o|Mag1| 1|1 |1 |1|1]1 h-yg-i-ne
2y o112]2|2]2]|2]2 ciccicrce
hiygei ne
3 g 0 1 1 2 3«3 3 3 3 -
- h-ygie-ne
4 i 0 1 2 2 3 3 % 4 4 ciccdcicc
51 el|o0]1 22|33 Mta|a]s hiyg eine
6 n 0 1 2 2 3 4 4 5 5
7 e 0 1 2 2 3 4 4 5 6

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 13 /19

Longest common subsequence

LCS — some remarks

We formulated the algorithm as maximizing the LCS
« Alternatively, we can minimize the costs associated with each operation:

- copy =0
— delete =1
— insert =1

The cost settings above are the typical, e.g., as in diff

In some applications we may want to have different costs for delete and insert
(e.g., mapping lemmas to inflected forms of words)

Similarly, we may want to assign different costs for different characters (e.g.,
higher cost to delete consonants in historical linguistics)

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 14 /19

Introduction/motivation Longest common subsequence Levenshtein distance

Levenshtein distance
definition
« Levenshtein difference between two strings is the total cost of insertions,
deletions and substitutions

o With cost of 1 for all operations

len(X) if len(Yy) =0
len(Y) iflen(Xx) =0
lev(Xx, Yy) lev(X,Y) 1 ifx=y
ev(X, Yy)
14+ min ¢ lev(Xx,Y)
lev(X,Y)

« Naive recursion (as defined above), again, is intractable
o But, the same dynamic programming method works

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 15/19

Introduction/motivation Longest common subsequence Levenshtein distance

Levenshtein distance

demonstration

ol (O ST IS =l (O

NN O O = WO N »r O

(CH =1 ¢}

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 16 /19

Introduction/motivation Longest common subsequence Levenshtein distance

Levenshtein distance

demonstration

(@)
N
(o)

[
-

ol (O ST IS =l (O

N O O b WO N —m O
NI N |G [WIN]|—,]O]m
AN O] W|IN|R|OlRIB5| -
G| N ==
Q]| W]|W[N RN | W
G| QN =N | 09 | &
BR[N] W]G] | O
B Q[WIN| W] O] o

B R W Wkl N8B |3
Wl | WG| || ® |

(CH =1 ¢}

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 16 /19

Introduction/motivation Longest common subsequence Levenshtein distance

Levenshtein distance

edits and alignments

0o 1 2 3 4 5 6 7 8

€ h i y g e i n e
0|le|o |1 |2]3|4|5|6]|7]S8
1| h|1Dod1_|2(3]|4a|5]6]7
2y |21 |1 ™| 2|3]|4|5]6
3 g |3 222 1g2]3]|4]5
a4l i|afs|2]s3]222]3]4
5/ e |54 |3]|3]3 [23_]3]3
6 |n| 6|5 4] 4] 4]|3]3[>3]|4
71le| 76|55 |5 |44 43

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 17 /19

Introduction/motivation Longest common subsequence Levenshtein distance

Edit distance: extensions and variations

Another possible operation we did not cover is swap (or transpose), which is
useful for applications like spell checking

In some applications (e.g., machine translation, OCR correction) we may
want to have one-to-many or many-to-one alignments

Additional requirements often introduce additional complexity

It is sometimes useful to learn costs from data

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 18 /19

Summary

« Edit distance is an important problem in many fields including computational
linguistics

o A number of related problems can be efficiently solved by dynamic
programming

« Edit distance is also important for approximate string matching and alignment

» Reading suggestion: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),
Jurafsky and Martin (2009, section 3.11, or 2.5 in online draft)

Next:
o Algorithms on strings: tries

e Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 19/19

Acknowledgments, credits, references

[M Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ispn:
9781118476734.

[Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. second edition. Pearson Prentice Hall. 1sBn: 978-0-13-504196-3.

C. Coltekin, SfS / University of Tiibingen Winter Semester 2024/25

Al

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 A2

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 A3

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 A4

blank
C. Coltekin, SfS / University of Tiibingen Winter Semester 2024 /25 A5

	String edit distance
	Introduction/motivation
	Edit distance
	Hamming distance
	A family of edit distance problems

	Longest common subsequence
	Longest common subsequence (LCS)
	LCS: a naive solution
	LCS: recursive definition
	LCS: divide-and-conquer
	LCS: dynamic programming
	LCS with dynamic programming
	LCS with dynamic programming
	Complexity of filling the LCS matrix
	Recovering the LCS from the matrix
	Transforming one string to another
	LCS alignments
	LCS – some remarks

	Levenshtein distance
	Levenshtein distance
	Levenshtein distance
	Levenshtein distance
	Levenshtein distance

	
	Edit distance: extensions and variations
	Summary

	Appendix
	Acknowledgments, credits, references

