String edit distance
Data Structures and Algorithms for Computational Linguistics Il
(ISCL-BA07)

Gagn Caltekin

ceoltekindats. uni-tuebingen. de

ety e
S e Sprachwisnmachtt

Winter Semester 2024/25

Edit distance
* Inmany applicatons, e want o know how simila (or diferent) twosring

- Comparing two e e sourc code)
mparing two DNA sequences

2 ot mentin
Aoprovimate s sting matcing
~ Determining similarity of two langusges

~ Machine tranlation.

« The solution as the (inverse)
Amgars

ipically

the other through a

+ Once we obtain the optimal edit operations, we may (depending on the edit
operations) also be able to determine the optimal alignment between the

Hamming distance

. The the
corresponding positions

[s[[]n] [y [s [[n]e]
BELETelifen]e] [[CIvIele [n]
010 H040+0+0=1 0+1+1+1+0+1+1=5
« Very casy eficient caeulation
+ Butcannot handle sequences of diferen lenths (consider hygene ~ higeine)

A family of edit distance problems

lies to a number of well-k
* that difer in the npenfoper.momnl\owed
~ Hamming distance: only replacements
— Longest common subsequence (LCS): insertions and deletions.
et ditance nserions, deions and subsiutions
el

" trnspositons o) of adjacent symbols

t time
" complexity

« Poly g prog S

Longest common subsequence (LCS)
Froblem
5 but contiguous)
Sequenca of symbels rom i (3 ersonof he seence wher e o
‘more elements oved)

B
a substring (sub

contiguous)

= hyg, giene, ene are substrings of hygiene

+ The LCS of two strings is the longest string that is a subsequence of both
strings.

LOS (hygiens, hiygien)

- LCS(hygiene, hygeine)

bygine / hygene

« LCS s exactly the problem solved by the UNIX ds£ utility

- Ithas o
bioinformatics (e.g., DNA sequencing)

LCS: a naive solution

« Asimple solution is:
1. Enumerate all subsequences
2. Checkif it i also a subseqy

< of the frst sring
nce of the second strin

+ There are exponential number of subsequences of a string,

- thesitng i s b
L

th2 subsequences are removed

& emmptystring): abe emoved

~ For bed, we have subsequences of abe once with, and once without 4

« For strings of size & and m, the complexity of the brute-force algorithm is
0(2%m)

LCS: recursive definition

« Consider two strings X, Yy and their LCS Zz (X, Y, Z are possibly empty
strings, x,y, z are character

LCS: divide-and-conquer

_oobesnc

« 16— y, then this character has to be part of the LCS, x = y = 2, and Z must abeab sba—aa o
be the LCS of Xand Y __ abed-abec — et E
« If x # y, there are three cases abede-abec T abee
ZxFugs ZesdohelColXand Y abede-abe B
72 16 alo the LCS of X and Y . aba—aa L ece
Y= 2 2z it also the LCS of Xand Yy —abea
« This leads to following recursive definition: abeda abedee ke
LCS(Xx, Yy) X, ¥ 43
N 41\ tonger of LCS(Xx, Y] and LCS(X. Yy) ~ otherwise + Note the repeated computation

alsketch

LCS with dynamic programming

+ Tocalaate LCS(Xy, Yy),the LCS o sting X up to index,and the LCS of © 180D 06 O6FEH

1V up to index), we (may) ne EDE s wle

= o[Elo]o]o]o]o]olo]o]0

- im0 a1t

« If we store the above three values, we need only i x j operations 2fyloJiJ1J2]2[2]2]2]2

+ In the standard dynamic programming algorithm, we store the length of the afeg|oft1[1]2[3]3[a]3]3

LCS, in a matrix {, where {, 1 the length o the LCS(X,.Y,) sz 253 =

+ Once we fll n the matrtx, the I the length of the LCS s[elo iz 2 s s])5

+ We can trace back and recover the LCS using the dynamic programming s s

= 7lelo1]2]2]3]4a]a]5]6
Complexity of filling the LCS matrix Recovering the LCS from the matrix

0 1 2 3 4 5 6 7 8

[n] s[e[i[n]e

- op zooatage-ta + .2+ 1) e T e o o s

1o N [o[

120, 91t 2 [y o1 22222

1 < meaQEt, 5+ 10, 20 41, 3D sfelo a2 o3 2]

« Two loops up to 1 and m, the time complexity is O(nm) ANDERERRENEInE

+ Similarl, the space compleity isalso O) s o Tz 25 N5

6[mlo[1]2]2]5 4455

se]o1]2]2]3]s]]5[%

Transforming one string to another LCS alignments

<[n]u c[i[n]e
« The table (back arrows) o gives a et of edit operations to transform one L
string to another o[e]oJolofofo]o]olo]0 Alignments:
« For LCS, operations are: o S o [hoyg-ine
- copy (diagonal arrows i the demonstratio T
— insert (Ieft arrows in the demo - assuming nwmv stringis the vertical one) 2yjojrjrgagafaf2j2j2 hiyget-ne
delte(up arrows n the demo) s N
« These also form an alignment betsween two strings .\ R AR VE R hoyg e-ne,
« Different set of edit operations recovered wil yield the same LS, but ! Z clec ciee
different alignments e [o [2|25 [l s hiyg eine
elmo |22]sa]s>
7e]o 2254 o
LCS - some remarks Levenshtein distance
defnton

+ Levenshtein difference between two strings is the total cost of insertions,
+ We formulated the algorithm as maximizing the LCS deletions and substitutions

+ Alternatively, we can minimize the costs associated with each aperation: « With cost of 1 for al operations.

len(X) iflen(Yy) =0
iflen(Xx) =0
=y

- dele
= insert =1

+ The costsettings above are the typical, e g, as in di£1

« In some applications we may want to have different costs for delete and insert
(e:8. mapping lemmas to inflected forms of words)

« Similarly, we may want to assign different costs for different characters (e.g.
higher cost to delete consonants in historical linguistics) =000

lev(X, Yy)
1min { lev(Xx, V)

+ Naive recursion (as defined above), again, s intractable
+ But, the same dynamic programming method works

Levenshtein distance Levenshtein distance
0 1 2 3 45 6 7 8 0 1 2 3 45 6 7 8
ch iy [eleli[a]e TRy [eleli[n]e
o[Ejofi2al4]5]el7]s oEl o245 el7 s
DD ERnERE B N A SN Y
sy e a[i1l 3 s[5]% 2y [e a2 3 s]5]%
AnEEEaNEERE sz sl a5
sDfafsl2la]e]2]2]3]s sOfafa]2]> 2[5 [3 [«
s e]s s el o]e e Falo e
emlelsslalala a4 I I I I N
Ao EHENRE O EEORE
Edit distance: extensions and variations Summary

+ Edit distance is an important problem in many fields including computational
linguistics
+ Another possible operation swe did not cover is swep (or transpose), which is
useful for applications like spell checking.
« In some applications (e.g;, machine translation, OCR correction) we may
want to have one-to-many or many-to-one alignments
+ Additional duce additional compl

+ A number of related problems can be efficiently solved by dynamic
programming

1
. s porta PP

+ Reading suggestion: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),
Jurasky and Martin (2009, section 3.11, or 2.5 in online draft)
« Itis sometimes useful to learn costs from data Next:

+ Algorithms on strings: tries
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),

Acknowledgments, credits, references

Goodrich, Michael T, Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Struchiesand lgordms i Py, ated

1 urasky, Dol anc James H, Martin (2009, Spechand Language rcsing: an
Indctin o Nt Langue P, ool Ligstes o Sy
Recognition. sccond ecition. Pearson Prenti

	String edit distance
	Introduction/motivation
	Edit distance
	Hamming distance
	A family of edit distance problems

	Longest common subsequence
	Longest common subsequence (LCS)
	LCS: a naive solution
	LCS: recursive definition
	LCS: divide-and-conquer
	LCS: dynamic programming
	LCS with dynamic programming
	Complexity of filling the LCS matrix
	Recovering the LCS from the matrix
	Transforming one string to another
	LCS alignments
	LCS – some remarks

	Levenshtein distance
	Levenshtein distance
	Levenshtein distance
	Levenshtein distance

	
	Edit distance: extensions and variations
	Summary

	Appendix
	Acknowledgments, credits, references

