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Edit distance
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LCS: a naive solution
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LCS: recursive definition

« Consider two strings X, Yy and their LCS Zz (X, Y, Z are possibly empty
strings, x,y, z are character

LCS: divide-and-conquer
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LCS with dynamic programming
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Transforming one string to another LCS alignments
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LCS - some remarks Levenshtein distance
defnton

+ Levenshtein difference between two strings is the total cost of insertions,
+ We formulated the algorithm as maximizing the LCS deletions and substitutions

+ Alternatively, we can minimize the costs associated with each aperation: « With cost of 1 for al operations.

len(X) iflen(Yy) =0
iflen(Xx) =0
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+ The costsettings above are the typical, e g, as in di£1

« In some applications we may want to have different costs for delete and insert
(e:8. mapping lemmas to inflected forms of words)

« Similarly, we may want to assign different costs for different characters (e.g.
higher cost to delete consonants in historical linguistics) =000

lev(X, Yy)
1min { lev(Xx, V)

+ Naive recursion (as defined above), again, s intractable
+ But, the same dynamic programming method works
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Edit distance: extensions and variations Summary

+ Edit distance is an important problem in many fields including computational
linguistics
+ Another possible operation swe did not cover is swep (or transpose), which is
useful for applications like spell checking.
« In some applications (e.g;, machine translation, OCR correction) we may
want to have one-to-many or many-to-one alignments
+ Additional duce additional compl

+ A number of related problems can be efficiently solved by dynamic
programming
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+ Reading suggestion: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),
Jurasky and Martin (2009, section 3.11, or 2.5 in online draft)
« Itis sometimes useful to learn costs from data Next:

+ Algorithms on strings: tries
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),
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