
String edit distance
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2024/25

version: 2110cfd @2024-12-04

Introduction/motivation Longest common subsequence Levenshtein distance

Edit distance

• In many applications, we want to know how similar (or different) two string
are

– Comparing two files (e.g., source code)
– Comparing two DNA sequences
– Spell checking
– Approximate string matching
– Determining similarity of two languages
– Machine translation

• The solution is typically formulated as the (inverse) cost of obtaining one of
the strings from the other through a number of edit operations

• Once we obtain the optimal edit operations, we may (depending on the edit
operations) also be able to determine the optimal alignment between the
strings

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 1 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

Hamming distance
a simple distance metric between two sequences

• The Hamming distance measures number of different symbols in the
corresponding positions

h

h
0

y

i
1

g

g
0

i

i
0

e

e
0

n

n
0

e

e
0+ + + + + + = 1

h

h
0

y

i
1

g

y
1

i

g
1

e

e
0

n

i
1

e

n
1+ + + + + + = 5

• Very easy/efficient calculation
• But cannot handle sequences of different lengths (consider hygene – hiygeine)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

A family of edit distance problems

• The same overall idea applies to a number of well-known problems/solutions
that differ in the type of operations allowed

– Hamming distance: only replacements
– Longest common subsequence (LCS): insertions and deletions
– Levenshtein distance insertions, deletions and substitutions
– Levenshtein-Damerau distance insertions, deletions and substitutions and

transpositions (swap) of adjacent symbols
• Naive solutions to all (except Hamming distance) have exponential time
complexity

• Polynomial-time solution can be obtained using dynamic programming

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

Longest common subsequence (LCS)
Problem definition

• A subsequence is an order-preserving (but not necessarily contiguous)
sequence of symbols from a string (a version of the sequence where zero or
more elements are removed)

– hyg, gn, yene, hen, gene are subsequences of hygiene
• Note that a subsequence does not have to be a substring (substrings are
contiguous)

– hyg, giene, ene are substrings of hygiene
• The LCS of two strings is the longest string that is a subsequence of both
strings

– LCS(hygiene, hiygien) = hygien
– LCS(hygiene, hygeine) = hygine / hygene

• LCS is exactly the problem solved by the UNIX diff utility
• It has wide-ranging applications from source-code comparison to
bioinformatics (e.g., DNA sequencing)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS: a naive solution

• A simple solution is:
1. Enumerate all subsequences of the first string
2. Check if it is also a subsequence of the second string

• There are exponential number of subsequences of a string
– the string abc has 8 subsequences:

• abc: nothing removed
• ab, ac, bc: individual elements are removed
• a, b, c: length-2 subsequences are removed
• ϵ (empty string): abc removed

– For abcd, we have subsequences of abc once with, and once without d
– Each additional symbol doubles the number of subsequences

• For strings of size n and m, the complexity of the brute-force algorithm is
O(2nm)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS: recursive definition

• Consider two strings Xx, Yy and their LCS Zz (X, Y, Z are possibly empty
strings, x, y, z are characters)

• If x = y, then this character has to be part of the LCS, x = y = z, and Z must
be the LCS of X and Y

• If x ̸= y, there are three cases
– x ̸= y ̸= z: Zz is also the LCS of X and Y

– x = z: Zz is also the LCS of Xx and Y

– y = z: Zz is also the LCS of X and Yy

• This leads to following recursive definition:

LCS(Xx, Yy) =
{
LCS(X, Y)x if x = y

longer of LCS(Xx, Y) and LCS(X, Yy) otherwise

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS: divide-and-conquer

abcde-abec
abcd-abec …

abcde-abe abcd-ab

abc-ab
ab-ab a-a ϵ-ϵ

abc-a
ab-a a-a ϵ-ϵ

abc-ϵ

abcd-a
abc-a

ab-a a-a ϵ-ϵ

abc-ϵ
abcd-ϵ

e

b a

a

a

• Note the repeated computation

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS: dynamic programming
general sketch

• To calculate LCS(X:i, Y:j), the LCS of string X up to index i, and the LCS of
string Y up to index j, we (may) need

– LCS(X:i−1, Y:j−1)
– LCS(X:i−1, Y:j)
– LCS(X:i, Y:j−1)

• If we store the above three values, we need only i× j operations
• In the standard dynamic programming algorithm, we store the length of the
LCS, in a matrix ℓ, where ℓi,j is the length of the LCS(X:i, Y:j)

• Once we fill in the matrix, the ℓn,m is the length of the LCS
• We can trace back and recover the LCS using the dynamic programming
matrix

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS with dynamic programming
demonstration

0 1 2 3 4 5 6 7 8
ϵ h i y g e i n e

0 ϵ 0 0 0 0 0 0 0 0 0
1 h 0 1 1 1 1 1 1 1 1
2 y 0 1 1 2 2 2 2 2 2
3 g 0 1 1 2 3 3 3 3 3
4 i 0 1 2 2 3 3 4 4 4
5 e 0 1 2 2 3 4 4 4 5
6 n 0 1 2 2 3 4 4 5 5
7 e 0 1 2 2 3 4 4 5 6

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

Complexity of filling the LCS matrix

l = np.zeros(shape=(n + 1,m + 1))
for i in range(n):

for j in range(m):
if X[i] == Y[j]:

l[i + 1 , j + 1 ] = l[i, j] + 1
else:

l[i + 1, j + 1] = max(l[i, j + 1], l[i +1, j])

• Two loops up to n andm, the time complexity is O(nm)

• Similarly, the space complexity is also O(nm)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

Recovering the LCS from the matrix
0 1 2 3 4 5 6 7 8
ϵ h i y g e i n e

0 ϵ 0 0 0 0 0 0 0 0 0

1 h 0 1 1 1 1 1 1 1 1

2 y 0 1 1 2 2 2 2 2 2

3 g 0 1 1 2 3 3 3 3 3

4 i 0 1 2 2 3 3 4 4 4

5 e 0 1 2 2 3 4 4 4 5

6 n 0 1 2 2 3 4 4 5 5

7 e 0 1 2 2 3 4 4 5 6

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 19



Introduction/motivation Longest common subsequence Levenshtein distance

Transforming one string to another

• The table (back arrows) also gives a set of edit operations to transform one
string to another

• For LCS, operations are:
– copy (diagonal arrows in the demonstration)
– insert (left arrows in the demo – assuming original string is the vertical one)
– delete (up arrows in the demo)

• These also form an alignment between two strings
• Different set of edit operations recovered will yield the same LCS, but
different alignments

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS alignments
0 1 2 3 4 5 6 7 8
ϵ h i y g e i n e

0 ϵ 0 0 0 0 0 0 0 0 0

1 h 0 1 1 1 1 1 1 1 1

2 y 0 1 1 2 2 2 2 2 2

3 g 0 1 1 2 3 3 3 3 3

4 i 0 1 2 2 3 3 4 4 4

5 e 0 1 2 2 3 4 4 4 5

6 n 0 1 2 2 3 4 4 5 5

7 e 0 1 2 2 3 4 4 5 6

Alignments:
h-yg-iene
ciccicdcc
hiygei-ne

h-ygie-ne
ciccdcicc
hiyg-eine

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 13 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

LCS – some remarks

• We formulated the algorithm as maximizing the LCS
• Alternatively, we can minimize the costs associated with each operation:

– copy = 0
– delete = 1
– insert = 1

• The cost settings above are the typical, e.g., as in diff
• In some applications we may want to have different costs for delete and insert
(e.g., mapping lemmas to inflected forms of words)

• Similarly, we may want to assign different costs for different characters (e.g.,
higher cost to delete consonants in historical linguistics)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 14 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

Levenshtein distance
definition

• Levenshtein difference between two strings is the total cost of insertions,
deletions and substitutions

• With cost of 1 for all operations

lev(Xx, Yy) =



len(X) if len(Yy) = 0

len(Y) if len(Xx) = 0

lev(X, Y) if x = y

1+min


lev(X, Yy)
lev(Xx, Y)
lev(X, Y)

• Naive recursion (as defined above), again, is intractable
• But, the same dynamic programming method works

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

Levenshtein distance
demonstration

0 1 2 3 4 5 6 7 8
ϵ h i y g e i n e

0 ϵ 0 1 2 3 4 5 6 7 8
1 h 1 0 1 2 3 4 5 6 7
2 y 2 1 1 1 2 3 4 5 6
3 g 3 2 2 2 1 2 3 4 5
4 i 4 3 2 3 2 2 2 3 4
5 e 5 4 3 3 3 2 3 3 3
6 n 6 5 4 4 4 3 3 3 4
7 e 7 6 5 5 5 4 4 4 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

Levenshtein distance
edits and alignments

0 1 2 3 4 5 6 7 8
ϵ h i y g e i n e

0 ϵ 0 1 2 3 4 5 6 7 8
1 h 1 0 1 2 3 4 5 6 7
2 y 2 1 1 1 2 3 4 5 6
3 g 3 2 2 2 1 2 3 4 5
4 i 4 3 2 3 2 2 2 3 4
5 e 5 4 3 3 3 2 3 3 3
6 n 6 5 4 4 4 3 3 3 4
7 e 7 6 5 5 5 4 4 4 3

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 17 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

Edit distance: extensions and variations

• Another possible operation we did not cover is swap (or transpose), which is
useful for applications like spell checking

• In some applications (e.g., machine translation, OCR correction) we may
want to have one-to-many or many-to-one alignments

• Additional requirements often introduce additional complexity
• It is sometimes useful to learn costs from data

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 18 / 19

Introduction/motivation Longest common subsequence Levenshtein distance

Summary

• Edit distance is an important problem in many fields including computational
linguistics

• A number of related problems can be efficiently solved by dynamic
programming

• Edit distance is also important for approximate string matching and alignment
• Reading suggestion: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),
Jurafsky and Martin (2009, section 3.11, or 2.5 in online draft)

Next:
• Algorithms on strings: tries
• Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 13),

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 19 / 19

Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN:
9781118476734.
Jurafsky, Daniel and James H. Martin (2009). Speech and Language Processing: An
Introduction to Natural Language Processing, Computational Linguistics, and Speech
Recognition. second edition. Pearson Prentice Hall. ISBN: 978-0-13-504196-3.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.1
blank

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.2

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.3

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.4



blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.5


	String edit distance
	Introduction/motivation
	Edit distance
	Hamming distance
	A family of edit distance problems

	Longest common subsequence
	Longest common subsequence (LCS)
	LCS: a naive solution
	LCS: recursive definition
	LCS: divide-and-conquer
	LCS: dynamic programming
	LCS with dynamic programming 
	Complexity of filling the LCS matrix
	Recovering the LCS from the matrix
	Transforming one string to another
	LCS alignments
	LCS – some remarks

	Levenshtein distance
	Levenshtein distance
	Levenshtein distance
	Levenshtein distance

	
	Edit distance: extensions and variations
	Summary


	Appendix
	Acknowledgments, credits, references


