
Directed graph algorithms
Data Structures and Algorithms for Computational Linguistics III

(ISCL-BA-07)

Çağrı Çöltekin
ccoltekin@sfs.uni-tuebingen.de

University of Tübingen
Seminar für Sprachwissenschaft

Winter Semester 2024/25

version: ab7b171 @2024-11-18

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Directed graphs

• Directed graphs are graphs with directed edges
• Some operations are more meaningful or challenging in directed graphs
• We will cover some of these operations, and some interesting sub-types of
directed graphs

– Transitive closure
– Directed acyclic graphs
– Topological ordering

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 1 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Some terminology

• For any pair of nodes u and v in a directed graph
– A directed graph is strongly connected if there is a directed path between u to v

and v to u

– A directed graph is semi-connected if there is a directed path between u to v or v
to u

– A directed graph is weakly connected if the undirected graph obtained by
replacing all edges with undirected edges result in a connected graph

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 2 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Checking strong connectivity

• Naive attempt: traverse the graph
independently from each node (strongly
connected if all traversals visit all nodes)

– Time complexity: O(n(n+m))

• A better one:
– traverse the graph from an arbitrary node
– reverse all edges, traverse again
– intuition: if there is a reverse path from D to

A, then D is reachable from A
• Time complexity: O(n+m)

• Note: we do not need to copy the graph, we
only need to do ‘reverse edge’ queries

A B

C

D E

A B

C

D E

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 3 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Transitive closure

• We know that graph traversals answer reachability questions about two nodes
efficiently

• Pre-computing all nodes reachable from every other node is beneficial in
some applications

• The transitive closure of a graph is another graph where
– The set of nodes are the same as the original graph
– There is an edge between two nodes u and v if v is reachable from u

• For an undirected graph, transitive closure can be computed by computing
the connected components

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 4 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Computing transitive closure on directed graphs

• A straightforward algorithm:
– run n graph traversals, from each node in the graph,
– add an edge between the start node to any node discovered by the traversal
– time complexity is O(n(n+m))

• Floyd-Warshall algorithm is another well-known algorithm that runs more
efficiently in some settings

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 5 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Floyd-Warshall algorithm
for finding transitive closure

• Remember that transitive closure of a graph is another graph
• Floyd-Warshall algorithm is an iterative algorithm that
computes the transitive closure in n iterations

• The algorithm starts with setting transitive closure to the
original graph

• For k = 1 . . .n

– Add a directed edge (vi, vj) to transitive closure if it already
contains both (vi, vk) and (vk, vj)

• It is efficient if graph is implemented with an adjacency
matrix and it is not sparse

A

B

C

i

k

j

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 6 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Floyd-Warshall demonstration

A B

C D E

F G

k i

j
j

j

j j

i

j

j
j

j j

k

k

k

k

k k

A B C D E F G

A F F F F F F F

B F F F F F F F

C F F F F F F F

D F F F F F F F

E F F F F F F F

F F F F F F F F

G F F F F F F F

T

T T

T T

T

T T

T

T

T

T

T T

T

T

T

T

T

T

T

T

T

T

T

T

T

T

T T T T

T

T

T

T

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 7 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Floyd-Warshall algorithm
adjacency matrix implementation

T = [row[:] for row in G]
for k in range(n):

for i in range(n):
if i == k: continue
for j in range(n):

if j == i or j == k:
continue

T[i][j] = T[i][j] or \
T[i][k] and T[k][j]

• Time complexity is O(n3)

• Compare with repeated traversal:
O(n(n+m))

– Note that in a dense graphm is
O(n2)

• A version of this algorithm is also
used for finding shortest paths in
weighted graphs (later in the
course)

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 8 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Directed acyclic graphs

• Directed acyclic graphs (DAGs) are directed graphs without cycles
• DAGs have many practical applications (mainly, dependency graphs)

– Prerequisites between courses in a study program
– Class inheritance in an object-oriented program
– Scheduling constraints over tasks in a project
– Dependency parser output (generally trees, but can also be more general DAGs)
– A compact representation of a list of words:

c

b

a

i

t

r

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 9 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Directed acyclic graphs

https://www.xkcd.com/754/

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 10 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

DAG exammple
a (hypothetical) course prerequisite graph

Intro to Ling.

DSA 1

Intro to CL

DSA 2

Text techn.

Grammar form.

DSA 3

Parsing

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 11 / 16

https://www.xkcd.com/754/


Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Topological order

• A topological ordering of a directed graph is a sequence of nodes such that for
every directed edge (u, v) u is listed before v

• A topological ordering lists ‘prerequisites’ of a node before listing the node
itself

• There may be multiple topological orderings
• In the course prerequisite example, a topological ordering lists any acceptable
order that the courses can be taken

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 12 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Topological order example
course prerequisites – two alternative topological orders

Intro to Ling.

DSA 1

Intro to CL

DSA 2

Text techn.

Grammar form.

DSA 3

Parsing
Intro to Ling.

DSA 1

Intro to CL

DSA 2

Text techn.

Grammar form.

DSA 3
Parsing

Intro to CL

DSA 1

Text techn.

DSA 2

DSA 3
Intro to Ling.

Grammar form.
Parsing

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 13 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Topological sort
algorithm

topo, ready = [], []
incount = {}
for u in nodes:

incount[u] = u.indegree()
if incount[u] == 0:

ready.append(u)
while len(ready) > 0:

u = ready.pop()
topo.append(u)
for v in u.neighbors():

incount[v] −= 1
if incount[v] == 0:

ready.append(v)

• Keep record of number of incoming edges
• A node is ready to be placed in the sorted list
if there no unprocessed incoming edges

• Running time is O(n+m)

• If the topological ordering does not contain
all the edges, the graph includes a cycle

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 14 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Topological sort
demonstration

A
0

B
0

C
0

D
2

E
1

F
3

G
1

H
2

ready
A
B
C

sorted
C

1
C

BE
0

1

B
E

G
0

2

E GG A

D

0
A

D

H

0

1
D

H

F

0

H
F

F

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 15 / 16

Introduction/motivation Strong connectivity Transitive closure DAGs and topological order

Summary

• Some operations on directed graphs are more challenging
• We covered

– Finding strongly connected components
– Finding the transitive closure of a digraph
– DAGs and topological ordering

• Reading on graphs: Goodrich, Tamassia, and Goldwasser (2013, chapter 14)
Next:

• More on graphs: shortest paths, minimum spanning trees

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 16 / 16

Acknowledgments, credits, references

Goodrich, Michael T., Roberto Tamassia, and Michael H. Goldwasser (2013).
Data Structures and Algorithms in Python. John Wiley & Sons, Incorporated. ISBN:
9781118476734.

Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.1

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.2

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.3

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.4

blank
Ç. Çöltekin, SfS / University of Tübingen Winter Semester 2024/25 A.5


	Directed graph algorithms
	Introduction/motivation
	Directed graphs
	Some terminology

	Strong connectivity
	Checking strong connectivity

	Transitive closure
	Transitive closure
	Computing transitive closure on directed graphs
	Floyd-Warshall algorithm
	Floyd-Warshall demonstration
	Floyd-Warshall algorithm

	DAGs and topological order
	Directed acyclic graphs
	Directed acyclic graphs
	DAG exammple
	Topological order
	Topological order example
	Topological sort
	Topological sort

	
	Summary


	Appendix
	Acknowledgments, credits, references


