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Dependency grammars

« Dep y popularity in linguistics (p: lyin CL
rather recently

« They are old: roots can be traced back to Panini (approx. 5th century BCE)

+ Modern dependency grammars are often attributed to Tesnicre (1959)
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Dependency grammars
Advantages and dssdvantges

Close relation to semantics.
+ Easier for lexible/free word order
Lots,lots of (multi-lingual) computational work, resources.
+ Often much useful in downstream tasks
More efficient parsing algorithms
~ No distinction between modification of head or the whole ‘constituent’
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Universal Dependencies project
(s practica detour)

+ Like constituency annotation efforts, most earlier dependency annotations
were language- or even project-specific
« This has been a major hurdle for multi-lingual and cross-lingual work
+ The Universal Dependencies (UD) project aims to unify dependency
annotation efforts as much as possible
th

o ! for many.
languages
= Currently (UD version 2.16) 296 trecbanks covering 168 languages

CONLL-X/U format for dependency annotation

Dependency parsing
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+ Dependency parsing has many similarities with context-free parsing (e.3,
trecs)

+ Italso has some differences (g, number of edges and depth of trees are
limited)

+ Dependency parsing can be
grammar-driven (hand crafted rules or constraints)
- data-driven (rules/model s learned from a treebank)

Rad  on  to  leam  the  facts

Grammar-driven dependency parsing

+ Grammar-driven dependency parsers typically based on
- lexicazed CF parsing
= constraint satisfaction problem

Data-driven dependency parsing
commcr s dte-eiren pases

+ Almost any modern practical dependency parseris statistical
e e e e e
+ There are tw

main approaches

e e e

hen
metimes soff,or welghtad,consains are used
- Practical implementations exist

+ Our focus will be on data-driven methods

~ find minimum spanning tre (MST)
 adaptationsof CF chart parser (8, CKY)

(in general, computationally more expensive)
Transition-based! similar to shift-reduce (LR(K)) parsing
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Transition-based parsing

iflereneces from shitreduce parsing

. (LR) parsers for formal | "
are determined by a table lookup

« Natural

1 s,a dependency p
cannot be made deterministic
+ Operations are (somewhat) different: instead of reduce (using
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Transition based parsing

« Use a stack and a bufier of unprocessed words
- Parsing as predicting a sequence of ransitions like
Lerr-Arc: mark current word as the head of the word on top of the stack
Ricirr-Axe: mark current word
Sturt: push the current word on to the stack
« Algorithm terminates when all words in the input are processed

. deterministic, best dicted
using a machine learning method

as dependent of the word on top of the stack.

A typical transition system
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Transition based parsing: example
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Transition based parsing: example

Ricur-Asc(on)

Note: We need St for NP attachment.

Transition based parsing: example
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Transition based parsing: example

Ricr-Asc(soor)
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Transition based parsing: example
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Transition based parsing: example Making transition decisions
.U (for formal table
= o determinize the parser actions
33 totraina
= + Almost any machine learning (classification) method s applicable
+ The features used for prediction i extracted from the states of the parser:
~ Top-k words on the sack
 Nextm words n the buffer
 Transition decisions made sofar (the arcs)
+ Given these objects, one can extract and use arbitrary features:
~ Words as categorical variables
~ oSt
Z Embeddings
The training data Non-projective parsing
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Pseudo-projective parsing Transition based parsing: summary /notes
« Linear time, greedy, projective parsing
+ Can be extended to non-projective dependencies
+ We need some extra work for generating gold-standard transition sequences
Nore e A MG 8 scheduled on the ssue today from trecbanks
—
+ Earl errors propagate,
long:distance dependencies
+ The greedy algorithm can be extended to beam search for bette accuracy
(stil linear time complexity)
Puendojctocree - PNE i scheduled on - the s today
MST algorithm for dependency parsing MST example
« For directed graphs, there is a polynomial time algorithm that finds the
tree (MST) of
(Chu-Liu-Edmonds algorithm)
with a dense/fully
+ Removes edges until the esulting graphis a tree
Foreach node selec the incoming are it highest weght

MST example

her duck

MST example
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Detect the cyeles, contract ther o ‘single node”

Pick the best arc int the comibined node, break the cyele




MST example

her” duck

Once all cyeles are liminated, the result i the MST

Properties of the MST parser

+ The MST parser is non-projective:
« There is an algorithm with O(n?) time complexity
with

o but stillcose to
quadratic)

« The weights/parameters are associated with edges (often called
“arcfactored)

« We can learn the arc weights directly from a trecbank

+ However,tis difficult to incorporate non-lacal features

External features

« For both type of parsers, one can obtain features that are based on
unsupervised methods such as.

clustering,
- alinmentransfer rom bl corpora rscbanks
)

e vector representations (embes
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Evaluation metrics for dependency parsers

« Like CF parsing, exact match is often too strict
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Evaluation example

Gold standard Parser output
& e
Al = =
her duck | saw  her duck
uas 100%
0%
Precision ey 50%
Recallguny ~ 100%
Precisiongy; 0% (assumed)
Recallyy 0%

Dependency parsing: summary
Dependencyrbtionsareoffen semantcaly xsir o e
* Itisalo claimed that dependency
e e
+ Dependency relatons are between words, no phrases o oherabstrac nodes
are postulated
 Two general methods:
it b ey e ool ftures, st s e
graph based i

parsing
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+ Combination of different methods often result in better performance

+ Non-projective Cgis difficult

« Most research has focused on
methods (maly ueing neurel networks)

+ Reading suggestion: Jurafsky and Martin (2009, draft chapter 14) Kiibler,
McDonald, and Nivre (2009)
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http://dickgrune.com/Books/PTAPG_1st_Edition/BookBody.pdf
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