Dependency parsing
Data Structures and Algorithms for Computational Linguistis 1l
(1sCL8A7)

Gagn Caltekin
ceoltekindats. uni-tuebingen. de

Universty of Tubingen
S e Sprachwisnmachtt

Winter Semester 2024/25

Dependency grammars

« Dep y popularity in linguistics (p: lyin CL
rather recently

« They are old: roots can be traced back to Panini (approx. 5th century BCE)

+ Modern dependency grammars are often attributed to Tesnicre (1959)

)

« Th idea s capt words, rather
them into (abstract) consfituents.

ey

John saw Mary

Dependency grammars Dependency grammars: alternative notation(s)
= root oot
J s e saw VERB
S ot) e
« No constituents, units of syntactic structure are words e G
. by 1 duck PRON NOUN
botween synactc s N
. Eachrelation defines cne ofthewords s the hea and the athr s e
« Typically,the links (relations) have labels (dependency types) her bt
~ Oftn an antifctal oot node s s for computatonal converience
1 saw her duck
Dependency grammars: common assumptions Dependency grammars: projectivity
 Every word has singl head
+ Tha deperdency graphs reacyclic
ol John s Mary sesiday walking i the pork
Wit theseassumptions, he representaton s e 5 sraph s sid
R . obermise o roete
parsng . Norprojectvity stems from a
~ rojotvedep - et
" Ingeneral dependenciesa)

Dependency grammars
Advantages and dssdvantges

Close relation to semantics.
+ Easier for lexible/free word order
Lots,lots of (multi-lingual) computational work, resources.
+ Often much useful in downstream tasks
More efficient parsing algorithms
~ No distinction between modification of head or the whole ‘constituent’

toannotat i

Universal Dependencies project
(s practica detour)

+ Like constituency annotation efforts, most earlier dependency annotations
were language- or even project-specific
« This has been a major hurdle for multi-lingual and cross-lingual work
+ The Universal Dependencies (UD) project aims to unify dependency
annotation efforts as much as possible
th

o ! for many.
languages
= Currently (UD version 2.16) 296 trecbanks covering 168 languages

CONLL-X/U format for dependency annotation

Dependency parsing

§ s D T Mo ersrorsen 0 T
2 o owm N 3 advood
F por ™ 4 mark
4 learn lesrm VERB VB FerbFora-int 1 acoup
5 che the DET D 6o
6 facts face Nom 2ony

+ Dependency parsing has many similarities with context-free parsing (e.3,
trecs)

+ Italso has some differences (g, number of edges and depth of trees are
limited)

+ Dependency parsing can be
grammar-driven (hand crafted rules or constraints)
- data-driven (rules/model s learned from a treebank)

Rad on to leam the facts

Grammar-driven dependency parsing

+ Grammar-driven dependency parsers typically based on
- lexicazed CF parsing
= constraint satisfaction problem

Data-driven dependency parsing
commcr s dte-eiren pases

+ Almost any modern practical dependency parseris statistical
e e e e e
+ There are tw

main approaches

e e e

hen
metimes soff,or welghtad,consains are used
- Practical implementations exist

+ Our focus will be on data-driven methods

~ find minimum spanning tre (MST)
 adaptationsof CF chart parser (8, CKY)

(in general, computationally more expensive)
Transition-based! similar to shift-reduce (LR(K)) parsing

redce) at ach step
- Lincar time complexity
- We

Shift-Reduce parsing
s efsher theough an xampe

S PIS+PIS—P
P Num [P x Num P/ Num

i T3E3 e r umy

Transition-based parsing

iflereneces from shitreduce parsing

. (LR) parsers for formal | "
are determined by a table lookup

« Natural

1 s,a dependency p
cannot be made deterministic
+ Operations are (somewhat) different: instead of reduce (using

labeled arc

(e todeal pro

Transition based parsing

« Use a stack and a bufier of unprocessed words
- Parsing as predicting a sequence of ransitions like
Lerr-Arc: mark current word as the head of the word on top of the stack
Ricirr-Axe: mark current word
Sturt: push the current word on to the stack
« Algorithm terminates when all words in the input are processed

. deterministic, best dicted
using a machine learning method

as dependent of the word on top of the stack.

A typical transition system

AT)
ok Tufter o

LerrAnc: (o] wi,wy | B.A) = (o

- P

| B AULwyrow)

pwi,

+ add arc 1,7, i) to A (keep w; in the bufer)

Ricurascy: (0| wiwy [BA) 5 (6w BAU{w,rw))
+ popwi,

« add arc (wi. T, w;) to A,

+ move ws o the bufer
wylB.A) = (01w,

+ pushw; tothe stack

< remove it from the buffer

Surr (o B.A)

Transition based parsing: example

St

ion based parsing: example

Lerr Arc(xsun)

Sturt

Transition based parsing: example

Ricur-Asc(on)

Note: We need St for NP attachment.

Transition based parsing: example

Sturt

‘Transition based parsing: example

Swrr

Transition based parsing: example

Lerr-Arc(case)

we “ her

‘Transition based parsing: example

Ricr-Ac(os)

We [e win

Transition based parsing: example

Ricr-Asc(soor)

with binoculars

Transition based parsing: example

Sturr

with binoculars

Transition based parsing: example Making transition decisions
.U (for formal table
= o determinize the parser actions
33 totraina
= + Almost any machine learning (classification) method s applicable
+ The features used for prediction i extracted from the states of the parser:
~ Top-k words on the sack
 Nextm words n the buffer
 Transition decisions made sofar (the arcs)
+ Given these objects, one can extract and use arbitrary features:
~ Words as categorical variables
~ oSt
Z Embeddings
The training data Non-projective parsing
o parsing parser configuratons «The P so far works proj
« The data data dependencies
* Thegener e o consiut a tanston seqenceb perorming mock * One way o achive (i) non projctive parsing i o add specil
parsing using treebank annotations as an oper: ot s ke 1 e stk bt
Swar operation thatswaps okens i the stck and the b
+ There may be multiple sequences that e he e dependency e s Lorw Akc and RicirARe franitons offrom nan-op words fromthe stack
procedure defines a canonicaltransition sequence o e e
+ For example, preprocessing o profecivize’ th trees before training
Lere-Arc, 1f (0] 7,00]) € A 3
RicureAxc, i (ol0, . O] € A s
and all dependents of 0] are attachect ~ post processing forresoring the projctvity after parsing
o i Re-troduce projectvty o the mared dependences
Pseudo-projective parsing Transition based parsing: summary /notes
« Linear time, greedy, projective parsing
+ Can be extended to non-projective dependencies
+ We need some extra work for generating gold-standard transition sequences
Nore e A MG 8 scheduled on the ssue today from trecbanks
—
+ Earl errors propagate,
long:distance dependencies
+ The greedy algorithm can be extended to beam search for bette accuracy
(stil linear time complexity)
Puendojctocree - PNE i scheduled on - the s today
MST algorithm for dependency parsing MST example
« For directed graphs, there is a polynomial time algorithm that finds the
tree (MST) of
(Chu-Liu-Edmonds algorithm)
with a dense/fully
+ Removes edges until the esulting graphis a tree
Foreach node selec the incoming are it highest weght

MST example

her duck

MST example

s
S——

her

Detect the cyeles, contract ther o ‘single node”

Pick the best arc int the comibined node, break the cyele

MST example

her” duck

Once all cyeles are liminated, the result i the MST

Properties of the MST parser

+ The MST parser is non-projective:
« There is an algorithm with O(n?) time complexity
with

o but stillcose to
quadratic)

« The weights/parameters are associated with edges (often called
“arcfactored)

« We can learn the arc weights directly from a trecbank

+ However,tis difficult to incorporate non-lacal features

External features

« For both type of parsers, one can obtain features that are based on
unsupervised methods such as.

clustering,
- alinmentransfer rom bl corpora rscbanks
)

e vector representations (embes
B i o

Evaluation metrics for dependency parsers

« Like CF parsing, exact match is often too strict

s whos are d
- As) petoma
= y Y typ

. used for d
particular dependency type

precision depends

recall par
fmeasure il (SR

Evaluation example

Gold standard Parser output
& e
Al = =
her duck | saw her duck
uas 100%
0%
Precision ey 50%
Recallguny ~ 100%
Precisiongy; 0% (assumed)
Recallyy 0%

Dependency parsing: summary
Dependencyrbtionsareoffen semantcaly xsir o e
* Itisalo claimed that dependency
e e
+ Dependency relatons are between words, no phrases o oherabstrac nodes
are postulated
 Two general methods:
it b ey e ool ftures, st s e
graph based i

parsing

m"a)

+ Combination of different methods often result in better performance

+ Non-projective Cgis difficult

« Most research has focused on
methods (maly ueing neurel networks)

+ Reading suggestion: Jurafsky and Martin (2009, draft chapter 14) Kiibler,
McDonald, and Nivre (2009)

learning

Acknowledgments, references, additional reading material
B coneemscomart s o A
Bl possso “ v Ay S ——

http://dickgrune.com/Books/PTAPG_1st_Edition/BookBody.pdf

	Dependency parsing
	Dependency grammars
	Dependency grammars
	Dependency grammars
	Dependency grammars: alternative notation(s)
	Dependency grammars: common assumptions
	Dependency grammars: projectivity
	Dependency grammars
	Universal Dependencies project
	CONLL-X/U format for dependency annotation

	Dependency parsing
	Dependency parsing
	Grammar-driven dependency parsing
	Data-driven dependency parsing

	Transition-based parsing
	Shift-Reduce parsing
	Transition-based parsing
	Transition based parsing
	A typical transition system
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Transition based parsing: example
	Making transition decisions
	The training data
	Non-projective parsing
	Pseudo-projective parsing
	Transition based parsing: summary/notes

	MST for dependency parsing
	MST algorithm for dependency parsing
	MST example
	MST example
	MST example
	MST example
	Properties of the MST parser

	Evaluation/alternatives/improvements
	External features
	Evaluation metrics for dependency parsers
	Evaluation example

	
	Dependency parsing: summary

	Appendix
	Acknowledgments, references, additional reading material

