What are we analyzing?
Analysis of Algorithms
Data Structures and Algorithms for Computational Linguistics 1
(1sCL8A7) + Sofar we frequently asked: ‘can e do btter?
+ Now,we turn to the questions of
= wehat s beter?

Cagn Goltekin  How do we know analgorithrnis bette than the oher?
ceoltekingsts.uni-tusbingen.de + There are many propertes that we may want to improve
Gty of Tobngen  fobusiness
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Winter Semester 2024/25 i this lectue, effcency will b our focus

+ in particular time cficency comploty

How to determine running time of an algorithm? Some functions to know about
Definition
+ Afews issues with this approach
. N = mplementing something, that does o
+ A possible approad work s not productive (o fun) g e
’ E al poential N o
= Testwith varying imput inputs et 4o
version reparted 10 yearsago, do you eally Other polynomialsf(n) = n*, for k >3
have an mprovement? Exponentil fn) = b forb> 1
+ Aformal approach offers some help here Factorial fin) =t
+ We will use these functions to characterize running times of algorithms
Some functions to know about Some functions to know about
he picture - hy wecare boutthetsdifference hetiggerpcure

A few facts about logarithms Polynomials
+ Logarithm is the inverse of exponentiation:

x=logyn < b¥=n + A degree-0 polynomial is a constant function (f(n) = ¢)
+ We will mostly use base-2 ogarithms. For us, no-base means base-2 + Degree-1 i linear (f(n) =n + )
+ Additional properties: + Degree-2is quadrati (f(n) = n? +n+ ¢)

logxy = logx +Iogy + We generally drop the lower order terms (soon we'l see why)

.- ~ Sometimes 1 will b usefl 0 remenmberthat
g nnt1)
. Vi2ese eno i
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 Logar than

Combinations and permutations Proof by induction

o=t xx2x1

« Permutations: « Induction is an important proof technique

B o w + It often used fo both proving the correctness and running times of
Pl =nx (1) x (k=) = algorithms
. .  Itworksif s of an algorithm (1
+ Combinations ' choose K e e
X w Pkl  Assume the resul s corec o , show that it lso olds for -+ 1
e~ (3) =58 -t
Proof by induction Formal analysis of running time of algorithms

Example: shavw that 14234+ = nin +1/2

« Base case, for n=1

+ Assuming
+ The running time is characterized as a function of input size
+ We are aiming for an analysis method

~ independent of hardware / software environment

- does not require implementation before analysis

= considers all possible inputs

we need to show that
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How much hardware independence?

quite, bt ot completely we assme a RAM model of computing

+ Characterized by random acc
sequential memory, like a tape)

- Wea P P (addition,
comparison) in constant time.

« The data and the instructions are stored in the RAM

s memory (RAM) (e.g. in comparison to.a

« The processor fetches
« This is mostly true for any computing system we use in practice

RAM model: an example

« Processing unit performs basic.
operations in constant time

+ Any memory cell with an address.
can be accessed in equal (constant)
time

+ The instructions as well as the data
s kept in the memory

+ There may be other, specialized
registers

+ Modern proce
employ a ‘cache’

processing unit

ing units also

Formal analysis of running time

« Simply count the number of primitive aperations
- Primitive operations include:

- Assignment

- Anthmetic operations.

- Comparing primitve data ypes e, numbers)

- Accessing 3 single memory location

~ Function cals return from functions

« Not primitive operations:

~ loops, recursion.

- comparing sequences

Focus on the worst case

« Algorithms are generally faster on certain input than others
« In most cases, we are interested in the worst case analysis
- Guaraneing worst cas s mporant

+ Average case analysis s also useful, but
- retes dfing distbuton v s put
= often more challen

Counting primitive operations
example: ncarest points the mave lgorthn
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Big-O notation

« Big-O notation is used for indicating an upper bound on running time of an
algorithm as a function of runing time
of an algorithm s O((n)),
" proportional o f{n)asthe input ize . grows
« More formally, given functions (n) and g(n], we say that f(n) is O(g[n) if
there s a constant ¢ > 0 and integer no > 1 such that

fn) < x gln) forn > no

« Sometimes the notation f(n) = O(g(n] is also used, but beware: this equal
sign is not symmetric

Big-O example

Big-O, another example
Tinj=nt o
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Big:O, yet another example

nat O(n) - proof by picture
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Back to the function classes

Fami Definition
Constant ) =c
Logarithmic ) = logy n
Linear n

log f(n) =nlogn
Quadratic n?
Cubic n

Other polynomials
Exponential
Factorial

+ None of these functions can be expressed as a constant factor of another

Rules of thumb

Drop the lvwer order terms

« In the big-O notation, we drop the constants and lower order terms

- A polymomial degres d1s On)

0n* £ dn 1 + 10015 O[]
B
20 10n s 0(2%)
e ol rpesson
1005 O[5m), but we prefer O[]

i+ 10018 O(n), bt we prefer O(n)
. Tmnunvuy iff(n) = O(g(n]), and g(n) = O[h(n]), then f(n) =
« Additivity: if both (n) and g(n) are O((n) (n) +

Ofhn))
g(n)is Ofh(n)

Rules of thumb

Offn)

logn
B
lon® 420
log2"
mpan 4
T00x 2t 2%
nt o

logn!_nlogn




Big-O: back to nearest points

Big-O examples

ast sortase cistanceosace) T
Pt 2 (eon
27 Gonatant) « What s the worst-case running time?
for 1 5o range(n) o 2 2asigmmens
3 ln rengets) o increment
d ~aistmcstpotma ), posncais) ¢  Gef Tinear_search(seq, vaD): 7 e s
g H Lm () =3n+3=0(n)
L hle s fms
xoturn in * : B + What s the average-case running time?
: T 2 2assigments
: ach 3. 2(n/2) comparisons, /2 increment, 1
T =3+ (142434 +n=T) x4+ 7 return None e
P, Tln) = 3/2n+3 = 0(n)
N s + Whatabout best case? O(1]
=om?) Note: do ot confuse the big-O with the worstcase analysis,
Recursive example Why asymptotic analysis is important?
Recursve bnry sesech “mainum provem sz
. c 5 that + Assume we can solve a problerm of size m i a given time on current harduware
1t e, . 10, B Tm) = e +T(n/2) prom
SRR by . + We get a better computer, which runs 1024 times faster
: o I T + New problem size we can solve in the same time
h 2 Tn/2) = e+ Tin/a), New problem size we can solve n thesame tme ___
g Tn/A) = ¢+ Tin/3) Complex new problem size
; ' + S0,Tin) = 2c-+ T(n/4) =3¢+ T(n/8) 102im
0 T m“‘ = L + More generally, Tin) = ic + T(n/2') Quadratic (n?) 32m
. o B Exponential 2") _ m+10
o T e the good news: i . y
T = lagn £ T01) < Ofiog) algorithms
- T = witha exponentisl lgrithmfs ardare docs ot help
r, see Appendix) !
Worst case and asymptotic analysis Big-O relatives

pros and cons

thels
pro s u(-am( and we gt (vey)strong it we oo tht e g,
won't perform worse than the bou

problems,
~ In practice you may prefer an algorithm that does better on average (we'll e
examples from sorting)
+ Our analyses are based on asymptotic behavior
o for a large enough input, asymptotic analysis i correct
con constant or lower order factors are not ahways unimportant
- Aconstant factor o 1001 should probably not be ignored

« Big-O (upper bound): f(n)is Olg(n)
if () is asymptotically ess fa or qual to g(r)

() < eglm) forn > ne
+ Big:Omega (lower bound): f(n)is Q(g(n))
if f(n) i asymptotically greatr han or egual t g(n)
n) > cgln) for n > no
« Big:Theta (upper/lower bound): f(n) is B(g(n))
3f f(n) i asymptotically eual o g(n)
f(n) is Olg(n)) and f(n) is Q(g[n))

Big-O, Big-0, Big-: an example

T —nd 4 3n s

O fore=2andn

Tin) < egin) forn > no

Q fore=1andng =0

Tin) > egin) forn > no

© forc=2,no=3,¢’ = Tandn§

and

Tin) < egin) forn > no
Tin) > egln) forn > nj

Summary

« Sublinear (e.g. logarithmic), Linear and  log

« Polynomial algorithms may be acceptable in many cases

« Exponential algorithms are bad

. this I

« Reading for this lecture: Goodrich, Tamassia, and Goldwasser (2013,

Next:
+ Common patterns in algorightms
« Sorting algorithms
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) - up to 12.7

Acknowledgments, credits, references

B Goodrich, Michael T, Roberto Tamassia, and Michael H. Goldwasser nnm

A(nother) view of computational complexity
1NN complte and al that

« A major division of complexity classes according to Big-O notation s between
P polynomial time algorithms

NP non-deterministic polynomial time algorithms.

A big question in computing is whether P = NP

Dae S v gt n Pl o Wi e, Inrporic B s
9781118474 - Solving an NP complete problem in P would mean proving
P
Video from https://www. youtube. com/watch?v=YX40hbAHx3s
Exercise Recurrence relations

Sortthefunctions based on ssymptatic order of growth

logn!0%® logs™
nlog(n) ( S )
2,
logn Toglognt
logn!/=n N
logn w
log2*/n »
Togn! (,‘)
log 2" 2

the mastrthorem
+ Given a recurrence relation:
i) = aT () + 1)
@ number ofsub-problems.
Y reduction factor or the input
(1) amount of work for creating and combining sub-problems
C ] if fn) is Ofnloss a—¢]
T(n) = ¢ O logn) if f(n) is O *)
elf(n)) A f(n) is Q%+ <€) and af(n/b) < cf(n) for some ¢ < 1

« In many practical cases a = b (simplifies the expressions above)

is not general it



https://www.youtube.com/watch?v=YX40hbAHx3s
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