What are we analyzing?
Analysis of Algorithms
Data Structures and Algorithms for Computational Linguistics 1
(1sCL8A7) + Sofar we frequently asked: ‘can e do btter?
+ Now,we turn to the questions of
= wehat s beter?

Cagn Goltekin How do we know analgorithrnis bette than the oher?
ceoltekingsts.uni-tusbingen.de + There are many propertes that we may want to improve
Gty of Tobngen fobusiness
S o Syttt o=
Winter Semester 2024/25 i this lectue, effcency will b our focus

+ in particular time cficency comploty

How to determine running time of an algorithm? Some functions to know about
Definition
+ Afews issues with this approach
. N = mplementing something, that does o
+ A possible approad work s not productive (o fun) g e
’ E al poential N o
= Testwith varying imput inputs et 4o
version reparted 10 yearsago, do you eally Other polynomialsf(n) = n*, for k >3
have an mprovement? Exponentil fn) = b forb> 1
+ Aformal approach offers some help here Factorial fin) =t
+ We will use these functions to characterize running times of algorithms
Some functions to know about Some functions to know about
he picture - hy wecare boutthetsdifference hetiggerpcure

A few facts about logarithms Polynomials
+ Logarithm is the inverse of exponentiation:

x=logyn < b¥=n + A degree-0 polynomial is a constant function (f(n) = ¢)
+ We will mostly use base-2 ogarithms. For us, no-base means base-2 + Degree-1 i linear (f(n) =n +)
+ Additional properties: + Degree-2is quadrati (f(n) = n? +n+ ¢)

logxy = logx +Iogy + We generally drop the lower order terms (soon we'l see why)

.- ~ Sometimes 1 will b usefl 0 remenmberthat
g nnt1)
. Vi2ese eno i
caese >
Pyt
 Logar than

Combinations and permutations Proof by induction

o=t xx2x1

« Permutations: « Induction is an important proof technique

B o w + It often used fo both proving the correctness and running times of
Pl =nx (1) x (k=) = algorithms
. . Itworksif s of an algorithm (1
+ Combinations ' choose K e e
X w Pkl Assume the resul s corec o , show that it lso olds for -+ 1
e~ (3) =58 -t
Proof by induction Formal analysis of running time of algorithms

Example: shavw that 14234+ = nin +1/2

« Base case, for n=1

+ Assuming
+ The running time is characterized as a function of input size
+ We are aiming for an analysis method

~ independent of hardware / software environment

- does not require implementation before analysis

= considers all possible inputs

we need to show that

Hntl

nnt1)
7

How much hardware independence?

quite, bt ot completely we assme a RAM model of computing

+ Characterized by random acc
sequential memory, like a tape)

- Wea P P (addition,
comparison) in constant time.

« The data and the instructions are stored in the RAM

s memory (RAM) (e.g. in comparison to.a

« The processor fetches
« This is mostly true for any computing system we use in practice

RAM model: an example

« Processing unit performs basic.
operations in constant time

+ Any memory cell with an address.
can be accessed in equal (constant)
time

+ The instructions as well as the data
s kept in the memory

+ There may be other, specialized
registers

+ Modern proce
employ a ‘cache’

processing unit

ing units also

Formal analysis of running time

« Simply count the number of primitive aperations
- Primitive operations include:

- Assignment

- Anthmetic operations.

- Comparing primitve data ypes e, numbers)

- Accessing 3 single memory location

~ Function cals return from functions

« Not primitive operations:

~ loops, recursion.

- comparing sequences

Focus on the worst case

« Algorithms are generally faster on certain input than others
« In most cases, we are interested in the worst case analysis
- Guaraneing worst cas s mporant

+ Average case analysis s also useful, but
- retes dfing distbuton v s put
= often more challen

Counting primitive operations
example: ncarest points the mave lgorthn

Tl =3+ (14243 +

=t

noT) x4+l

—ax +4

Big-O notation

« Big-O notation is used for indicating an upper bound on running time of an
algorithm as a function of runing time
of an algorithm s O((n)),
" proportional o f{n)asthe input ize . grows
« More formally, given functions (n) and g(n], we say that f(n) is O(g[n) if
there s a constant ¢ > 0 and integer no > 1 such that

fn) < x gln) forn > no

« Sometimes the notation f(n) = O(g(n] is also used, but beware: this equal
sign is not symmetric

Big-O example

Big-O, another example
Tinj=nt o

Tin) = —2n 451 0(n) 3nis ol
10000 o[
8,000 =
6,000 =
g £ 20
= 4000 =
2000 i
o 0
0 20 40 @ 80 100 o 1 2 3 4 5
T Ines

Big:O, yet another example

nat O(n) - proof by picture

af

Back to the function classes

Fami Definition
Constant) =c
Logarithmic) = logy n
Linear n

log f(n) =nlogn
Quadratic n?
Cubic n

Other polynomials
Exponential
Factorial

+ None of these functions can be expressed as a constant factor of another

Rules of thumb

Drop the lvwer order terms

« In the big-O notation, we drop the constants and lower order terms

- A polymomial degres d1s On)

0n* £ dn 1 + 10015 O[]
B
20 10n s 0(2%)
e ol rpesson
1005 O[5m), but we prefer O[]

i+ 10018 O(n), bt we prefer O(n)
. Tmnunvuy iff(n) = O(g(n]), and g(n) = O[h(n]), then f(n) =
« Additivity: if both (n) and g(n) are O((n) (n) +

Ofhn))
g(n)is Ofh(n)

Rules of thumb

Offn)

logn
B
lon® 420
log2"
mpan 4
T00x 2t 2%
nt o

logn!_nlogn

Big-O: back to nearest points

Big-O examples

ast sortase cistanceosace) T
Pt 2 (eon
27 Gonatant) « What s the worst-case running time?
for 1 5o range(n) o 2 2asigmmens
3 ln rengets) o increment
d ~aistmcstpotma), posncais) ¢ Gef Tinear_search(seq, vaD): 7 e s
g H Lm () =3n+3=0(n)
L hle s fms
xoturn in * : B + What s the average-case running time?
: T 2 2assigments
: ach 3. 2(n/2) comparisons, /2 increment, 1
T =3+ (142434 +n=T) x4+ 7 return None e
P, Tln) = 3/2n+3 = 0(n)
N s + Whatabout best case? O(1]
=om?) Note: do ot confuse the big-O with the worstcase analysis,
Recursive example Why asymptotic analysis is important?
Recursve bnry sesech “mainum provem sz
. c 5 that + Assume we can solve a problerm of size m i a given time on current harduware
1t e, . 10, B Tm) = e +T(n/2) prom
SRR by . + We get a better computer, which runs 1024 times faster
: o I T + New problem size we can solve in the same time
h 2 Tn/2) = e+ Tin/a), New problem size we can solve n thesame tme ___
g Tn/A) = ¢+ Tin/3) Complex new problem size
; ' + S0,Tin) = 2c-+ T(n/4) =3¢+ T(n/8) 102im
0 T m“‘ = L + More generally, Tin) = ic + T(n/2') Quadratic (n?) 32m
. o B Exponential 2") _ m+10
o T e the good news: i . y
T = lagn £ T01) < Ofiog) algorithms
- T = witha exponentisl lgrithmfs ardare docs ot help
r, see Appendix) !
Worst case and asymptotic analysis Big-O relatives

pros and cons

thels
pro s u(-am(and we gt (vey)strong it we oo tht e g,
won't perform worse than the bou

problems,
~ In practice you may prefer an algorithm that does better on average (we'll e
examples from sorting)
+ Our analyses are based on asymptotic behavior
o for a large enough input, asymptotic analysis i correct
con constant or lower order factors are not ahways unimportant
- Aconstant factor o 1001 should probably not be ignored

« Big-O (upper bound): f(n)is Olg(n)
if () is asymptotically ess fa or qual to g(r)

() < eglm) forn > ne
+ Big:Omega (lower bound): f(n)is Q(g(n))
if f(n) i asymptotically greatr han or egual t g(n)
n) > cgln) for n > no
« Big:Theta (upper/lower bound): f(n) is B(g(n))
3f f(n) i asymptotically eual o g(n)
f(n) is Olg(n)) and f(n) is Q(g[n))

Big-O, Big-0, Big-: an example

T —nd 4 3n s

O fore=2andn

Tin) < egin) forn > no

Q fore=1andng =0

Tin) > egin) forn > no

© forc=2,no=3,¢’ = Tandn§

and

Tin) < egin) forn > no
Tin) > egln) forn > nj

Summary

« Sublinear (e.g. logarithmic), Linear and log

« Polynomial algorithms may be acceptable in many cases

« Exponential algorithms are bad

. this I

« Reading for this lecture: Goodrich, Tamassia, and Goldwasser (2013,

Next:
+ Common patterns in algorightms
« Sorting algorithms
+ Reading: Goodrich, Tamassia, and Goldwasser (2013, chapter 12) - up to 12.7

Acknowledgments, credits, references

B Goodrich, Michael T, Roberto Tamassia, and Michael H. Goldwasser nnm

A(nother) view of computational complexity
1NN complte and al that

« A major division of complexity classes according to Big-O notation s between
P polynomial time algorithms

NP non-deterministic polynomial time algorithms.

A big question in computing is whether P = NP

Dae S v gt n Pl o Wi e, Inrporic B s
9781118474 - Solving an NP complete problem in P would mean proving
P
Video from https://www. youtube. com/watch?v=YX40hbAHx3s
Exercise Recurrence relations

Sortthefunctions based on ssymptatic order of growth

logn!0%® logs™
nlog(n) (S)
2,
logn Toglognt
logn!/=n N
logn w
log2*/n »
Togn! (,‘)
log 2" 2

the mastrthorem
+ Given a recurrence relation:
i) = aT () + 1)
@ number ofsub-problems.
Y reduction factor or the input
(1) amount of work for creating and combining sub-problems
C] if fn) is Ofnloss a—¢]
T(n) = ¢ O logn) if f(n) is O *)
elf(n)) A f(n) is Q%+ <€) and af(n/b) < cf(n) for some ¢ < 1

« In many practical cases a = b (simplifies the expressions above)

is not general it

https://www.youtube.com/watch?v=YX40hbAHx3s

	Analysis of Algorithms
	Introduction
	What are we analyzing?
	How to determine running time of an algorithm?

	Preliminaries
	Some functions to know about
	Some functions to know about
	Some functions to know about
	A few facts about logarithms
	Polynomials
	Combinations and permutations
	Proof by induction
	Proof by induction

	Asymptotic analysis
	Formal analysis of running time of algorithms
	How much hardware independence?
	RAM model: an example
	Formal analysis of running time
	Focus on the worst case
	Counting primitive operations
	Big-O notation
	Big-O example
	Big-O, another example
	Big-O, yet another example
	Back to the function classes
	Rules of thumb
	Rules of thumb
	Big-O: back to nearest points
	Big-O examples
	Recursive example
	Why asymptotic analysis is important?
	Worst case and asymptotic analysis
	Big-O relatives
	Big-O, Big-, Big-: an example
	Summary

	Appendix
	Acknowledgments, credits, references
	A(nother) view of computational complexity
	Exercise
	Recurrence relations

